19,195 research outputs found

    Information is not a Virus, and Other Consequences of Human Cognitive Limits

    Full text link
    The many decisions people make about what to pay attention to online shape the spread of information in online social networks. Due to the constraints of available time and cognitive resources, the ease of discovery strongly impacts how people allocate their attention to social media content. As a consequence, the position of information in an individual's social feed, as well as explicit social signals about its popularity, determine whether it will be seen, and the likelihood that it will be shared with followers. Accounting for these cognitive limits simplifies mechanics of information diffusion in online social networks and explains puzzling empirical observations: (i) information generally fails to spread in social media and (ii) highly connected people are less likely to re-share information. Studies of information diffusion on different social media platforms reviewed here suggest that the interplay between human cognitive limits and network structure differentiates the spread of information from other social contagions, such as the spread of a virus through a population.Comment: accepted for publication in Future Interne

    Invariant vector fields and groupoids

    Full text link
    We use the notion of isomorphism between two invariant vector fields to shed new light on the issue of linearization of an invariant vector field near a relative equilibrium. We argue that the notion is useful in understanding the passage from the space of invariant vector fields in a tube around a group orbit to the space invariant vector fields on a slice to the orbit. The notion comes from Hepworth's study of vector fields on stacks.Comment: 15 pages. Comments and corrections appreciated (v2): example added (v3): partially re-written in response to referees' comments. Accepted for publication in IMR

    Social Information Processing in Social News Aggregation

    Full text link
    The rise of the social media sites, such as blogs, wikis, Digg and Flickr among others, underscores the transformation of the Web to a participatory medium in which users are collaboratively creating, evaluating and distributing information. The innovations introduced by social media has lead to a new paradigm for interacting with information, what we call 'social information processing'. In this paper, we study how social news aggregator Digg exploits social information processing to solve the problems of document recommendation and rating. First, we show, by tracking stories over time, that social networks play an important role in document recommendation. The second contribution of this paper consists of two mathematical models. The first model describes how collaborative rating and promotion of stories emerges from the independent decisions made by many users. The second model describes how a user's influence, the number of promoted stories and the user's social network, changes in time. We find qualitative agreement between predictions of the model and user data gathered from Digg.Comment: Extended version of the paper submitted to IEEE Internet Computing's special issue on Social Searc
    corecore