56 research outputs found

    Role for T-type Ca2+Ca 2+ channels in sleep waves

    Get PDF
    International audienceSince their discovery more than 30 years ago, low-threshold T-type Ca2+Ca 2+ channels (T channels) have been suggested to play a key role in many EEG waves of non-REM sleep, which has remained exclusively linked to the ability of these channels to generate low-threshold Ca2+Ca 2+ potentials and associated high-frequency bursts of action potentials. Our present understanding of the biophysics and physiology of T channels, however, highlights a much more diverse and complex picture of the pivotal contributions that they make to different sleep rhythms. In particular, recent experimental evidence has conclusively demonstrated the essential contribution of thalamic T channels to the expression of slow waves of natural sleep and the key role played by Ca2+Ca 2+ entry through these channels in the activation or modulation of other voltage-dependent channels that are important for the generation of both slow waves and sleep spindles. However, the precise contribution to sleep rhythms of T channels in cortical neurons and other sleep-controlling neuronal networks remains unknown, and a full understanding of the cellular and network mechanisms of sleep delta waves is still lacking

    On the action of the anti-absence drug ethosuximide in the rat and cat thalamus

    Get PDF
    The action of ethosuximide (ETX) on Na+, K+, and Ca2+ currents and on tonic and burst-firing patterns was investigated in rat and cat thalamic neurons in vitro by using patch and sharp microelectrode recordings. In thalamocortical (TC) neurons of the rat dorsal lateral geniculate nucleus (LGN), ETX (0.75-1 mM) decreased the noninactivating Na+ current, INaP, by 60% but had no effect on the transient Na+ current. In TC neurons of the rat and cat LGN, the whole-cell transient outward current was not affected by ETX (up to 1 mM), but the sustained outward current was decreased by 39% at 20 mV in the presence of ETX (0.25-0.5 mM): this reduction was not observed in a low Ca2+ (0.5 mM) and high Mg2+ (8 mM) medium or in the presence of Ni2+ (1 mM) and Cd2+ (100 µm). In addition, ETX (up to 1 mM) had no effect on the low-threshold Ca2+ current, I T, of TC neurons of the rat ventrobasal (VB) thalamus and LGN and in neurons of the rat nucleus reticularis thalami nor on the high-threshold Ca2+ current in TC neurons of the rat LGN. Sharp microelectrode recordings in TC neurons of the rat and cat LGN and VB showed that ETX did not change the resting membrane potential but increased the apparent input resistance at potentials greater than -60 mV, resulting in an increase in tonic firing. In contrast, ETX decreased the number of action potentials in the burst evoked by a low-threshold Ca2+ potential. The frequency of the remaining action potentials in a burst also was decreased, whereas the latency of the first action potential was increased. Similar effects were observed on the burst firing evoked during intrinsic δ oscillations. These results indicate an action of ETX on / NaP and on the Ca2+-activated K+ current, which explains the decrease in burst firing and the increase in tonic firing, and, together with the lack of action on low- and high-threshold Ca2+ currents, the results cast doubts on the hypothesis that a reduction of / τ in thalamic neurons underlies the therapeutic action of this anti-absence medicine

    Dual function of thalamic low-vigilance state oscillations: Rhythm-regulation and plasticity

    Get PDF
    During inattentive wakefulness and non-rapid eye movement (NREM) sleep, the neocortex and thalamus cooperatively engage in rhythmic activities that are exquisitely reflected in the electroencephalogram as distinctive rhythms spanning a range of frequencies from <1 Hz slow waves to 13 Hz alpha waves. In the thalamus, these diverse activities emerge through the interaction of cell-intrinsic mechanisms and local and long-range synaptic inputs. One crucial feature, however, unifies thalamic oscillations of different frequencies: repetitive burst firing driven by voltage-dependent Ca(2+) spikes. Recent evidence reveals that thalamic Ca(2+) spikes are inextricably linked to global somatodendritic Ca(2+) transients and are essential for several forms of thalamic plasticity. Thus, we propose herein that alongside their rhythm-regulation function, thalamic oscillations of low-vigilance states have a plasticity function that, through modifications of synaptic strength and cellular excitability in local neuronal assemblies, can shape ongoing oscillations during inattention and NREM sleep and may potentially reconfigure thalamic networks for faithful information processing during attentive wakefulness

    Pathway-specific action of gamma-hydroxybutyric acid in sensory thalamus and its relevance to absence seizures

    Get PDF
    The systemic injection of -hydroxybutyric acid (GHB) elicits spike and wave discharges (SWDs), the EEG hallmark of absence seizures, and represents a well established, widely used pharmacological model of this nonconvulsive epilepsy. Despite this experimental use of GHB, as well as its therapeutic use in narcolepsy and its increasing abuse, however, the precise cellular mechanisms underlying the different pharmacological actions of this drug are still unclear. Because sensory thalamic nuclei play a key role in the generation of SWDs and sleep rhythms, and because direct injection of GHB in the ventrobasal (VB) thalamus elicits SWDs, we investigated GHB effects on corticothalamic EPSCs and GABAergic IPSCs in VB thalamocortical (TC) neurons. GHB (25

    Gamma-hydroxybutyrate does not maintain self-administration but induces conditioned place preference when injected in the ventral tegmental area

    Get PDF
    Gamma-hydroxybutyric acid (GHB) is an endogenous brain substance that has diverse neuropharmacological actions, including rewarding properties in different animal species and in humans. As other drugs of abuse, GHB affects the firing of ventral tegmental neurons (VTA) in anaesthetized animals and hyperpolarizes dopaminergic neurons in VTA slices. However, no direct behavioural data on the effects of GHB applied in the VTA or in the target regions of its dopaminergic neurons, e.g. the nucleus accumbens (NAc), are available. Here, we investigated the effects of various doses of intravenous GHB in maintaining self-administration (from 0.001 to 10 mg/kg per infusion), and its ability to induce conditioned place preference (CPP) in rats when given orally (175-350 mg/kg) or injected directly either in the VTA or NAc (from 10 to 300 microg/0.5 microl per side). Our results indicate that while only 0.01 mg/kg per infusion GHB maintained self-administration, although not on every test day, 350 mg/kg GHB given orally induced CPP. CPP was also observed when GHB was injected in the VTA (30-100 microg/0.5 microl per side) but not in the NAc. Together with recent in-vitro findings, these results suggest that the rewarding properties of GHB mainly occur via disinhibition of VTA dopaminergic neurons

    From sleep spindles of natural sleep to spike and wave discharges of typical absence seizures: is the hypothesis still valid?

    Get PDF
    The temporal coincidence of sleep spindles and spike-and-wave discharges (SWDs) in patients with idiopathic generalized epilepsies, together with the transformation of spindles into SWDs following intramuscular injection of the weak GABAA receptor (GABAAR) antagonist, penicillin, in an experimental model, brought about the view that SWDs may represent ‘perverted’ sleep spindles. Over the last 20 years, this hypothesis has received considerable support, in particular by in vitro studies of thalamic oscillations following pharmacological/genetic manipulations of GABAARs. However, from a critical appraisal of the evidence in absence epilepsy patients and well-established models of absence epilepsy it emerges that SWDs can occur as frequently during wakefulness as during sleep, with their preferential occurrence in either one of these behavioural states often being patient dependent. Moreover, whereas the EEG expression of both SWDs and sleep spindles requires the integrity of the entire cortico-thalamo-cortical network, SWDs initiates in cortex while sleep spindles in thalamus. Furthermore, the hypothesis of a reduction in GABAAR function across the entire cortico-thalamo-cortical network as the basis for the transformation of sleep spindles into SWDs is no longer tenable. In fact, while a decreased GABAAR function may be present in some cortical layers and in the reticular thalamic nucleus, both phasic and tonic GABAAR inhibitions of thalamo-cortical neurons are either unchanged or increased in this epileptic phenotype. In summary, these differences between SWDs and sleep spindles question the view that the EEG hallmark of absence seizures results from a transformation of this EEG oscillation of natural sleep

    Childhood absence epilepsy: genes, channels, neurons and networks

    No full text
    Childhood absence epilepsy is an idiopathic, generalized non-convulsive epilepsy with a multifactorial genetic aetiology. Molecular-genetic analyses of affected human families and experimental models, together with neurobiological investigations, have led to important breakthroughs in the identification of candidate genes and loci, and potential pathophysiological mechanisms for this type of epilepsy. Here, we review these results, and compare the human and experimental phenotypes that have been investigated. Continuing efforts and comparisons of this type will help us to elucidate the multigenetic traits and pathophysiology of this form of generalized epilepsy

    Excitabilité thalamique normale et pathologique

    No full text
    Durant ma thèse, je me suis intéressé aux mécanismes cellulaires sous-jacents aux activités normales et pathologiques des neurones thalamocorticaux. Par des approches électrophysiologiques in-vitro, dans un modèle génétique reconnu d épilepsie de type absence, j ai étudié le rôle de l inhibition GABAergique dans la pathophysiologie de cette maladie. J ai mis en évidence des modifications de cette transmission circonscrites au noyau réticulé du thalamus. Leur implémentation dans un modèle théorique de ce noyau entraîne l apparition d une fréquence de résonance dans la gamme des fréquences des décharges pointe-onde observées in-vivo. Par la suite, j ai étudié l impact d une régulation des canaux calciques de type T sur l intégration synaptique des neurones thalamocorticaux. Mes résultats montrent qu elle joue un rôle fondamental dans le traitement de l information générée à l intérieur de la boucle thalamocorticale mais ne modifie pas la réponse du réseau aux entrées sensorielles.PARIS-BIUSJ-Thèses (751052125) / SudocPARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF

    T-type calcium channels in synaptic plasticity

    No full text
    International audienceThe role of T-type calcium currents is rarely considered in the extensive literature covering the mechanisms of long-term synaptic plasticity. This situation reflects the lack of suitable T-type channel antagonists that till recently has hampered investigations of the functional roles of these channels. However, with the development of new pharmacological and genetic tools, a clear involvement of T-type channels in synaptic plasticity is starting to emerge. Here, we review a number of studies showing that T-type channels participate to numerous homo- and hetero-synaptic plasticity mechanisms that involve different molecular partners and both pre- and post-synaptic modifications. The existence of T-channel dependent and independent plasticity at the same synapse strongly suggests a subcellular localization of these channels and their partners that allows specific interactions. Moreover, we illustrate the functional importance of T-channel dependent synaptic plasticity in neocortex and thalamus
    corecore