25 research outputs found

    Towards a roadmap for living machines

    Get PDF
    A roadmap is a plan that identifies short-term and long-term goals of a research area and suggests potential ways in which those goals can be met. This roadmap is based on collating answers from interview with experts in the field of biomimetics, and covers a broad range of specialties. Interviews were carried out at events organized by the Convergent Science Network, including a workshop on biomimetics and Living Machines 2012. We identified a number of areas of strategic importance, from biomimetic air and underwater vehicles, to robot designs based on animal bodies, to biomimetic technologies for sensing and perception. © 2013 Springer-Verlag Berlin Heidelberg

    Active haptic shape recognition by intrinsic motivation with a robot hand

    Get PDF
    In this paper, we present an intrinsic motivation approach applied to haptics in robotics for tactile object exploration and recognition. Here, touch is used as the sensation process for contact detection, whilst proprioceptive information is used for the perception process. First, a probabilistic method is employed to reduce uncertainty present in tactile measurements. Second, the object exploration process is actively controlled by intelligently moving the robot hand towards interesting locations. The active behaviour performed with the robotic hand is achieved by an intrinsic motivation approach, which permitted to improve the accuracy for object recognition over the results obtained by a fixed sequence of exploration movements. The proposed method was validated in a simulated environment with a Monte Carlo method, whilst for the real environment a three-fingered robotic hand and various object shapes were employed. The results demonstrate that our method is robust and suitable for haptic perception in autonomous robotics

    A SOLID case for active bayesian perception in robot touch

    Get PDF
    In a series of papers, we have formalized a Bayesian perception approach for robotics based on recent progress in understanding animal perception. The main principle is to accumulate evidence for multiple perceptual alternatives until reaching a preset belief threshold, formally related to sequential analysis methods for optimal decision making. Here, we extend this approach to active perception, by moving the sensor with a control strategy that depends on the posterior beliefs during decision making. This method can be used to solve problems involving Simultaneous Object Localization and IDentification (SOLID), or 'where and what'. Considering an example in robot touch, we find that active perception gives an efficient, accurate solution to the SOLID problem for uncertain object locations; in contrast, passive Bayesian perception, which lacked sensorimotor feedback, then performed poorly. Thus, active perception can enable robust sensing in unstructured environments. © 2013 Springer-Verlag Berlin Heidelberg

    Active touch for robust perception under position uncertainty

    Get PDF
    In this paper, we propose that active perception will help attain autonomous robotics in unstructured environments by giving robust perception. We test this claim with a biomimetic fingertip that senses surface texture under a range of contact depths. We compare the performance of passive Bayesian perception with a novel approach for active perception that includes a sensorimotor loop for controlling sensor position. Passive perception at a single depth gave poor results, with just 0.2mm uncertainty impairing performance. Extending passive perception over a range of depths gave non-robust performance. Only active perception could give robust, accurate performance, with the sensorimotor feedback compensating the position uncertainty. We expect that these results will extend to other stimuli, so that active perception will offer a general approach to robust perception in unstructured environments

    Whisker-object contact speed affects radial distance estimation

    Get PDF
    Whiskered mammals such as rats are experts in tactile perception. By actively palpating surfaces with their whiskers, rats and mice are capable of acute texture discrimination and shape perception. We present a novel system for investigating whisker-object contacts repeatably and reliably. Using an XY positioning robot and a biomimetic artificial whisker we can generate signals for different whisker-object contacts under a wide range of conditions. Our system is also capable of dynamically altering the velocity and direction of the contact based on sensory signals. This provides a means for investigating sensory motor interaction in the tactile domain. Here we implement active contact control, and investigate the effect that speed has on radial distance estimation when using different features for classification. In the case of a moving object contacting a whisker, magnitude of deflection can be ambiguous in distinguishing a nearby object moving slowly from a more distant object moving rapidly. This ambiguity can be resolved by finding robust features for contact speed, which then informs classification of radial distance. Our results are verified on a dataset from SCRATCHbot, a whiskered mobile robot. Building whiskered robots and modelling these tactile perception capabilities would allow exploration and navigation in environments where other sensory modalities are impaired, for example in dark, dusty or loud environments such as disaster areas. © 2010 IEEE

    Active Bayesian perception and reinforcement learning

    Get PDF
    In a series of papers, we have formalized an active Bayesian perception approach for robotics based on recent progress in understanding animal perception. However, an issue for applied robot perception is how to tune this method to a task, using: (i) a belief threshold that adjusts the speed-accuracy tradeoff; and (ii) an active control strategy for relocating the sensor e.g. to a preset fixation point. Here we propose that these two variables should be learnt by reinforcement from a reward signal evaluating the decision outcome. We test this claim with a biomimetic fingertip that senses surface curvature under uncertainty about contact location. Appropriate formulation of the problem allows use of multi-armed bandit methods to optimize the threshold and fixation point of the active perception. In consequence, the system learns to balance speed versus accuracy and sets the fixation point to optimize both quantities. Although we consider one example in robot touch, we expect that the underlying principles have general applicability

    Angle and position perception for exploration with active touch

    Get PDF
    Over the past few decades the design of robots has gradually improved, allowing them to perform complex tasks in interaction with the world. To behave appropriately, robots need to make perceptual decisions about their environment using their various sensory modalities. Even though robots are being equipped with progressively more accurate and advanced sensors, dealing with uncertainties from the world and their sensory processes remains an unavoidable necessity for autonomous robotics. The challenge is to develop robust methods that allow robots to perceive their environment while managing uncertainty and optimizing their decision making. These methods can be inspired by the way humans and animals actively direct their senses towards locations for reducing uncertainties from perception [1]. For instance, humans not only use their hands and fingers for exploration and feature extraction but also their movements are guided according to what it is being perceived [2]. This behaviour is also present in the animal kingdom, such as rats that actively explore the environment by appropriately moving their whiskers [3]. © 2013 Springer-Verlag Berlin Heidelberg

    Whiskered texture classification with uncertain contact pose geometry

    Get PDF
    Tactile sensing can be an important source of information for robots, and texture discrimination in particular is useful in object recognition and terrain identification. Whisker based tactile sensing has recently been shown to be a promising approach for mobile robots, using simple sensors and many classification approaches. However these approaches have often been tested in limited environments, and have not been compared against one another in a controlled way. A wide range of whisker-object contact poses are possible on a mobile robot, and the effect such contact variability has on sensing has not been properly investigated. We present a novel, carefully controlled study of simple surface texture classifiers on a large set of varied pose conditions that mimic those encountered by mobile robots. Namely, single brief whisker contacts with textured surfaces at a range of surface orientations and contact speeds. Results show that different classifiers are appropriate for different settings, with spectral template and feature based approaches performing best in surface texture, and contact speed estimation, respectively. The results may be used to inform selection of classifiers in tasks such as tactile SLAM

    Naive Bayes texture classification applied to whisker data from a moving robot

    Get PDF
    Many rodents use their whiskers to distinguish objects by surface texture. To examine possible mechanisms for this discrimination, data from an artificial whisker attached to a moving robot was used to test texture classification algorithms. This data was examined previously using a template-based classifier of the whisker vibration power spectrum [1]. Motivated by a proposal about the neural computations underlying sensory decision making [2], we classified the raw whisker signal using the related ‘naive Bayes’ method. The integration time window is important, with roughly 100ms of data required for good decisions and 500ms for the best decisions. For stereotyped motion, the classifier achieved hit rates of about 80% using a single (horizontal or vertical) stream of vibration data and 90% using both streams. Similar hit rates were achieved on natural data, apart from a single case in which the performance was only about 55%. Therefore this application of naive Bayes represents a biologically motivated algorithm that can perform well in a real-world robot task

    Brain-inspired Bayesian perception for biomimetic robot touch

    Get PDF
    Studies of decision making in animals suggest a neural mechanism of evidence accumulation for competing percepts according to Bayesian sequential analysis. This model of perception is embodied here in a biomimetic tactile sensing robot based on the rodent whisker system. We implement simultaneous perception of object shape and location using two psychological test paradigms: first, a free-response paradigm in which the agent decides when to respond, implemented with Bayesian sequential analysis; and second an interrogative paradigm in which the agent responds after a fixed interval, implemented with maximum likelihood estimation. A benefit of free-response Bayesian perception is that it allows tuning of reaction speed against accuracy. In addition, we find that large gains in decision performance are achieved with unforced responses that allow null decisions on ambiguous data. Therefore free-response Bayesian perception offers benefits for artificial systems that make them more animal-like in behavior
    corecore