19 research outputs found

    Construction of uricase-overproducing strains of Hansenula polymorpha and its application as biological recognition element in microbial urate biosensor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The detection and quantification of uric acid in human physiological fluids is of great importance in the diagnosis and therapy of patients suffering from a range of disorders associated with altered purine metabolism, most notably gout and hyperuricaemia. The fabrication of cheap and reliable urate-selective amperometric biosensors is a challenging task.</p> <p>Results</p> <p>A urate-selective microbial biosensor was developed using cells of the recombinant thermotolerant methylotrophic yeast <it>Hansenula polymorpha </it>as biorecognition element. The construction of uricase (UOX) producing yeast by over-expression of the uricase gene of <it>H. polymorpha </it>is described. Following a preliminary screening of the transformants with increased UOX activity in permeabilized yeast cells the optimal cultivation conditions for maximal UOX yield namely a 40-fold increase in UOX activity were determined.</p> <p>The UOX producing cells were coupled to horseradish peroxidase and immobilized on graphite electrodes by physical entrapment behind a dialysis membrane. A high urate selectivity with a detection limit of about 8 ÎźM was found.</p> <p>Conclusion</p> <p>A strain of <it>H. polymorpha </it>overproducing UOX was constructed. A cheap urate selective microbial biosensor was developed.</p
    corecore