616 research outputs found

    The Effect of Corotation on the Radial Gradient of Metallicity of Spiral Galaxies

    Full text link
    The corotation radius in a spiral galaxy is the radius where the spiral pattern speed has the same velocity of the rotation curve. By compiling results from the literature for 20 spiral galaxies we verified a strong correlation between the radius of the minima or inflections of the metallicity distribution and the corotation radius.Comment: 3 pages, 1 figur

    CO observations and investigation of triggered star formation towards N10 infrared bubble and surroundings

    Full text link
    We studied the environment of the dust bubble N10 in molecular emission. Infrared bubbles, first detected by the GLIMPSE survey at 8.0 μ\mum, are ideal regions to investigate the effect of the expansion of the HII region on its surroundings eventual triggered star formation at its borders. In this work, we present a multi-wavelength study of N10. This bubble is especially interesting as infrared studies of the young stellar content suggest a scenario of ongoing star formation, possibly triggered, on the edge of the HII region. We carried out observations of 12^{12}CO(1-0) and 13^{13}CO(1-0) emission at PMO 13.7-m towards N10. We also analyzed the IR and sub-mm emission on this region and compare those different tracers to obtain a detailed view of the interaction between the expanding HII region and the molecular gas. We also estimated the parameters of the denser cold dust condensation and of the ionized gas inside the shell. Bright CO emission was detected and two molecular clumps were identified, from which we have derived physical parameters. We also estimate the parameters for the densest cold dust condensation and for the ionized gas inside the shell. The comparison between the dynamical age of this region and the fragmentation time scale favors the "Radiation-Driven Implosion" mechanism of star formation. N10 reveals to be specially interesting case with gas structures in a narrow frontier between HII region and surrounding molecular material, and with a range of ages of YSOs situated in region indicating triggered star formation.Comment: Version 2 - Submmited to ApJ (under review

    First optical images of circumstellar dust surrounding the debris disk candidate HD 32297

    Full text link
    Near-infrared imaging with the Hubble Space Telescope recently revealed a circumstellar dust disk around the A star HD 32297. Dust scattered light is detected as far as 400 AU radius and the linear morphology is consistent with a disk ~10 degrees away from an edge-on orientation. Here we present the first optical images that show the dust scattered light morphology from 560 to 1680 AU radius. The position angle of the putative disk midplane diverges by 31 degrees and the color of dust scattering is most likely blue. We associate HD 32297 with a wall of interstellar gas and the enigmatic region south of the Taurus molecular cloud. We propose that the extreme asymmetries and blue disk color originate from a collision with a clump of interstellar material as HD 32297 moves southward, and discuss evidence consistent with an age of 30 Myr or younger.Comment: 5 pages; Accepted for publication in ApJ Letter

    Bimodal chemical evolution of the Galactic disk and the Barium abundance of Cepheids

    Full text link
    In order to understand the Barium abundance distribution in the Galactic disk based on Cepheids, one must first be aware of important effects of the corotation resonance, situated a little beyond the solar orbit. The thin disk of the Galaxy is divided in two regions that are separated by a barrier situated at that radius. Since the gas cannot get across that barrier, the chemical evolution is independent on the two sides of it. The barrier is caused by the opposite directions of flows of gas, on the two sides, in addition to a Cassini-like ring void of HI (caused itself by the flows). A step in the metallicity gradient developed at corotation, due to the difference in the average star formation rate on the two sides, and to this lack of communication between them. In connection with this, a proof that the spiral arms of our Galaxy are long-lived (a few billion years) is the existence of this step. When one studies the abundance gradients by means of stars which span a range of ages, like the Cepheids, one has to take into account that stars, contrary to the gas, have the possibility of crossing the corotation barrier. A few stars born on the high metallicity side are seen on the low metallicity one, and vice-versa. In the present work we re-discuss the data on Barium abundance in Cepheids as a function of Galactic radius, taking into account the scenario described above. The [Ba/H] ratio, plotted as a function of Galactic radius, apparently presents a distribution with two branches in the external region (beyond corotation). One can re-interpret the data and attribute the upper branch to the stars that were born on the high metallicity side. The lower branch, analyzed separately, indicates that the stars born beyond corotation have a rising Barium metallicity as a function of Galactic radius.Comment: 6 pages, 7 figures, Proceedings of IAU Symposium 29

    HI aperture synthesis and optical observations of the pair of galaxies NGC 6907 and 6908

    Full text link
    NGC 6908, a S0 galaxy situated in direction of NGC 6907, was only recently recognized as a distinct galaxy, instead of only a part of NGC 6907. We present 21 cm radio synthesis observations obtained with the GMRT and optical images and spectroscopy obtained with the Gemini North telescope of this pair of interacting galaxies. From the radio observations we obtained the velocity field and the HI column density map of the whole region containing the NGC 6907/8 pair, and by means of the Gemini multi-object spectroscopy we obtained high quality photometric images and 5A˚5 {\AA} resolution spectra sampling the two galaxies. By comparing the rotation curve of NGC 6907 obtained from the two opposite sides around the main kinematic axis, we were able to distinguish the normal rotational velocity field from the velocity components produced by the interaction between the two galaxies. Taking into account the rotational velocity of NGC 6907 and the velocity derived from the absorption lines for NGC 6908, we verified that the relative velocity between these systems is lower than 60 km s1^{-1}. The emission lines observed in the direction of NGC 6908, not typical of S0 galaxies, have the same velocity expected for the NGC 6907 rotation curve. Some of them, superimposed on the absorption profiles, which reinforces the idea that they were not formed in NGC 6908. Finally, the HI profile exhibits details of the interaction, showing three components: one for NGC 6908, another for the excited gas in the NGC 6907 disk and a last one for the gas with higher relative velocities left behind NGC 6908 by dynamical friction, used to estimate the time when the interaction started in (3.4±0.6)×107(3.4 \pm 0.6)\times10^7 years ago.Comment: 11 pages, 5 tables, 13 figures. Corrected typos. Accepted for publication in MNRAS. The definitive version will be available at http://www.blackwell-synergy.co

    Observations of GRB 060526 Optical Afterglow with Russian-Turkish 1.5-m Telescope

    Full text link
    We present the results of the photometric multicolor observations of GRB 060526 optical afterglow obtained with Russian-Turkish 1.5-m Telescope (RTT150, Mt. Bakirlitepe, Turkey). The detailed measurements of afterglow light curve, starting from about 5 hours after the GRB and during 5 consecutive nights were done. In addition, upper limits on the fast variability of the afterglow during the first night of observations were obtained and the history of afterglow color variations was measured in detail. In the time interval from 6 to 16 hours after the burst, there is a gradual flux decay, which can be described approximately as a power law with an index of -1.14+-0.02. After that the variability on the time scale \delta t < t is observed and the afterglow started to decay faster. The color of the afterglow, V-R=~0.5, is approximately the same during all our observations. The variability is detected on time scales up to \delta t/t =~ 0.0055 at \Delta F_\nu/F_\nu =~ 0.3, which violates some constraints on the variability of the observed emission from ultrarelativistic jet obtained by Ioka et al. (2005). We suggest to explain this variability by the fact that the motion of the emitting shell is no longer ultrarelativistic at this time.Comment: 6 pages, 7 figures, Astronomy Letters, 2007, 33, 797, The on-line data tables and the original text in Russian can be found at http://hea.iki.rssi.ru/grb/060526/indexeng.htm

    The Scientific program with RIBRAS (Radioactive Ion Beams in Brasil)

    Get PDF
    The Radioactive Ion Beams Facility (RIBRAS) is in operation since 2004 at the Pelletron Accelerator Laboratory of the University of São Paulo and consists of two superconducting solenoids capable of producing low energy secondary beams of light exotic nuclei. Measurements of the elastic scattering, breakup and transfer reactions with radioactive projectiles such as 6He, 8Li, 7Be on several targets have been performed. A review of the research program carried on along the last four years using the RIBRAS facility is presented

    An Upper Limit to the Age of the Galactic Bar

    Get PDF
    Using data from the Two Micron All-Sky Survey (2MASS), we identify a population of infrared carbon (IR C) stars with J-K >= 2 in the Milky Way. These stars are shown to trace the stellar bar previously identified in IR and optical surveys. The properties of C stars strongly suggest that they are of intermediate age. We conclude that the bar is likely to have formed more recently than 3 Gyr ago, and must be younger than 6 Gyr. Implications and further tests of this conclusion are briefly discussed.Comment: accepted by ApJ Letters; 13 pages, 4 eps figure
    corecore