25 research outputs found
Levels of Urinary Trypsin Inhibitor and Structure of Its Chondroitin Sulphate Moiety in Type 1 and Type 2 Diabetes
Background. Diabetes mellitus is a global health problem representing the fifth leading cause of mortality and a major risk factor for cardiovascular diseases. In the last years, we reported an association among urinary trypsin inhibitor (UTI), a small proteoglycan that plays pleiotropic roles in many inflammatory processes, and both type 1 and 2 diabetes and developed a method for its direct quantitation and structural characterization. Methods. Urine from 39 patients affected by type 1 diabetes, 32 patients with type 2 diabetes, and 52 controls were analysed. UTI was separated from the main glycosaminoglycans physiologically present in urine by anion exchange chromatography, treated for chondroitin sulphate (CS) chain complete depolymerisation, and analysed for both UTI content and CS structure. UTI identification was performed by nano-LC-MS/MS analysis. Results. We evidenced increased UTI levels, as well as reduced sulphation of its CS moiety in association with diabetes, regardless of both age and medium-term glycaemic control. Furthermore, no association between UTI and albumin excretion rate was found. Conclusions. Evidences suggest that UTI levels are not directly correlated with renal function or, otherwise, that they may increase before the onset of renal impairment in diabetes, representing a potential marker for the underlying inflammatory condition
Glycosaminoglycan diversity in marine sponge extracellular matrix
Aim of this paper is to report on a screening on sponge ECM glycosaminoglycan (GAG) diversity.
To investigate the heterogeneity of sponge extracellular sulphated glycans, we determined their
content and distribution in some Mediterranean and Caribbean species. To focus on biological and
morpho-functional roles of these molecules in the sponge ECM some selected species were
considered as models to investigate the topographic distribution of GAGs in sponge body
according with the different architecture of specialized regions
Fine Structure of Glycosaminoglycans from Fresh and Decellularized Porcine Cardiac Valves and Pericardium
Cardiac valves are dynamic structures, exhibiting a highly specialized architecture consisting of cells and extracellular matrix with a relevant proteoglycan and glycosaminoglycan content, collagen and elastic fibers. Biological valve substitutes are obtained from xenogenic cardiac and pericardial tissues. To overcome the limits of such non viable substitutes, tissue engineering approaches emerged to create cell repopulated decellularized scaffolds. This study was performed to determine the glycosaminoglycans content, distribution, and disaccharides composition in porcine aortic and pulmonary valves and in pericardium before and after a detergent-based decellularization procedure. The fine structural characteristics of galactosaminoglycans chondroitin sulfate and dermatan sulfate were examined by FACE. Furthermore, the mechanical properties of decellularized pericardium and its propensity to be repopulated by in vitro seeded fibroblasts were investigated. Results show that galactosaminoglycans and hyaluronan are differently distributed between pericardium and valves and within heart valves themselves before and after decellularization. The distribution of glycosaminoglycans is also dependent from the vascular district and topographic localization. The decellularization protocol adopted resulted in a relevant but not selective depletion of galactosaminoglycans. As a whole, data suggest that both decellularized porcine heart valves and bovine pericardium represent promising materials bearing the potential for future development of tissue engineered heart valve scaffolds
Association between Human Plasma Chondroitin Sulfate Isomers and Carotid Atherosclerotic Plaques
Several studies have evidenced variations in plasma glycosaminoglycans content in physiological and pathological conditions. In normal human plasma GAGs are present mainly as undersulfated chondroitin sulfate (CS). The aim of the present study was to evaluate possible correlations between plasma CS level/structure and the presence/typology of carotid atherosclerotic lesion. Plasma CS was purified from 46 control subjects and 47 patients undergoing carotid endarterectomy showing either a soft or a hard plaque. The concentration and structural characteristics of plasma CS were assessed by capillary electrophoresis of constituent unsaturated fluorophore-labeled disaccharides. Results showed that the concentration of total CS isomers was increased by 21.4% (P < 0.01) in plasma of patients, due to a significant increase of undersulfated CS. Consequently, in patients the plasma CS charge density was significantly reduced with respect to that of controls. After sorting for plaque typology, we found that patients with soft plaques and those with hard ones differently contribute to the observed changes. In plasma from patients with soft plaques, the increase in CS content was not associated with modifications of its sulfation pattern. On the contrary, the presence of hard plaques was associated with CS sulfation pattern modifications in presence of quite normal total CS isomers levels. These results suggest that the plasma CS content and structure could be related to the presence and the typology of atherosclerotic plaque and could provide a useful diagnostic tool, as well as information on the molecular mechanisms responsible for plaque instability
Oxidative Modifications in Advanced Atherosclerotic Plaques: A Focus on In Situ Protein Sulfhydryl Group Oxidation
Although oxidative stress has been long associated with the genesis and progression of the atherosclerotic plaque, scanty data on its in situ effects on protein sulfhydryl group modifications are available. Within the arterial wall, protein sulfhydryls and low-molecular-weight (LMW) thiols are involved in the cell regulation of both Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) levels and are a target for several posttranslational oxidative modifications that take place inside the atherosclerotic plaque, probably contributing to both atherogenesis and atherosclerotic plaque progression towards complicated lesions. Advanced carotid plaques are characterized by very high intraplaque GSH levels, due to cell lysis during apoptotic and/or necrotic events, probably responsible for the altered equilibrium among protein sulfhydryls and LMW thiols. Some lines of evidence show that the prooxidant environment present in atherosclerotic tissue could modify filtered proteins also by protein-SH group oxidation, and demonstrate that particularly albumin, once filtered, represents a harmful source of homocysteine and cysteinylglycine inside the plaque. The oxidative modification of protein sulfhydryls, with particular emphasis to protein thiolation by LMW thiols and its association with atherosclerosis, is the main topic of this review
Differential distribution of structural components and hydration in aortic and pulmonary heart valve conduits: impact of detergent-based cell removal
Evaluation of the physiological performance of biological scaffolds for tissue engineering applications has been mostly based on biophysical and morphological methods, with limited attention paid to the quantitative contribution of the main structural components to native and/or treated valve assemblies. In the present study quantitation addressed the porcine leaflet, sinus and adjacent wall of aortic and pulmonary valved conduits before and after detergent-based cell removal. Collagen, elastin, glycosaminoglycan, lipid and water contents were expressed in terms of relative concentration and volume fraction in order to assess their effective contribution to the native tissue and to changes following decellularization procedures. The main findings were recognition of unexpectedly large water and underestimated collagen contents, differential distribution of elastin between the sectors and of glycosaminoglycan along the conduits and pulmonary scaffold destabilization upon cell removal, not found in the aortic case. Simultaneous investigations allowed consistent comparisons between native and decellularized tissues and added analytical knowledge crucial for designing realistic constitutive models. We have provided a quantitative structural foundation for earlier biomechanical findings in pulmonary leaflets and the basis for validation of theoretical assumptions still lacking the support of experimental evidence in both conduits. Future insights into the distribution of load-bearing components in human conduits are likely to provide indications important to optimize the surgical positioning of valvular grafts
Apolipoprotein Signature of HDL and LDL from Atherosclerotic Patients in Relation with Carotid Plaque Typology: A Preliminary Report
In the past years, it has become increasingly clear that the protein cargo of the different lipoprotein classes is largely responsible for carrying out their various functions, also in relation to pathological conditions, including atherosclerosis. Accordingly, detailed information about their apolipoprotein composition and structure may contribute to the revelation of their role in atherogenesis and the understanding of the mechanisms that lead to atherosclerotic degeneration and toward vulnerable plaque formation. With this aim, shotgun proteomics was applied to identify the apolipoprotein signatures of both high-density and low-density lipoproteins (HDL and LDL) plasma fractions purified from healthy volunteers and atherosclerotic patients with different plaque typologies who underwent carotid endarterectomy. By this approach, two proteins with potential implications in inflammatory, immune, and hemostatic pathways, namely, integrin beta-2 (P05107) and secretoglobin family 3A member 2 (Q96PL1), have been confirmed to belong to the HDL proteome. Similarly, the list of LDL-associated proteins has been enriched with 21 proteins involved in complement and coagulation cascades and the acute-phase response, which potentially double the protein species of LDL cargo. Moreover, differential expression analysis has shown protein signatures specific for patients with “hard” or “soft” plaques
Glycosaminoglycans:From Vascular Physiology to Tissue Engineering Applications
Cardiovascular diseases represent the number one cause of death globally, with atherosclerosis a major contributor. Despite the clinical need for functional arterial substitutes, success has been limited to arterial replacements of large-caliber vessels (diameter > 6 mm), leaving the bulk of demand unmet. In this respect, one of the most challenging goals in tissue engineering is to design a “bioactive” resorbable scaffold, analogous to the natural extracellular matrix (ECM), able to guide the process of vascular tissue regeneration. Besides adequate mechanical properties to sustain the hemodynamic flow forces, scaffold’s properties should include biocompatibility, controlled biodegradability with non-toxic products, low inflammatory/thrombotic potential, porosity, and a specific combination of molecular signals allowing vascular cells to attach, proliferate and synthesize their own ECM. Different fabrication methods, such as phase separation, self-assembly and electrospinning are currently used to obtain nanofibrous scaffolds with a well-organized architecture and mechanical properties suitable for vascular tissue regeneration. However, several studies have shown that naked scaffolds, although fabricated with biocompatible polymers, represent a poor substrate to be populated by vascular cells. In this respect, surface functionalization with bioactive natural molecules, such as collagen, elastin, fibrinogen, silk fibroin, alginate, chitosan, dextran, glycosaminoglycans (GAGs), and growth factors has proven to be effective. GAGs are complex anionic unbranched heteropolysaccharides that represent major structural and functional ECM components of connective tissues. GAGs are very heterogeneous in terms of type of repeating disaccharide unit, relative molecular mass, charge density, degree and pattern of sulfation, degree of epimerization and physicochemical properties. These molecules participate in a number of vascular events such as the regulation of vascular permeability, lipid metabolism, hemostasis, and thrombosis, but also interact with vascular cells, growth factors, and cytokines to modulate cell adhesion, migration, and proliferation. The primary goal of this review is to perform a critical analysis of the last twenty-years of literature in which GAGs have been used as molecular cues, able to guide the processes leading to correct endothelialization and neo-artery formation, as well as to provide readers with an overall picture of their potential as functional molecules for small-diameter vascular regeneration
Levels of Urinary Trypsin Inhibitor and Structure of Its Chondroitin Sulphate Moiety in Type 1 and Type 2 Diabetes
Background. Diabetes mellitus is a global health problem representing the fifth leading cause of mortality and a major risk factor for cardiovascular diseases. In the last years, we reported an association among urinary trypsin inhibitor (UTI), a small proteoglycan that plays pleiotropic roles in many inflammatory processes, and both type 1 and 2 diabetes and developed a method for its direct quantitation and structural characterization. Methods. Urine from 39 patients affected by type 1 diabetes, 32 patients with type 2 diabetes, and 52 controls were analysed. UTI was separated from the main glycosaminoglycans physiologically present in urine by anion exchange chromatography, treated for chondroitin sulphate (CS) chain complete depolymerisation, and analysed for both UTI content and CS structure. UTI identification was performed by nano-LC-MS/MS analysis. Results. We evidenced increased UTI levels, as well as reduced sulphation of its CS moiety in association with diabetes, regardless of both age and medium-term glycaemic control. Furthermore, no association between UTI and albumin excretion rate was found. Conclusions. Evidences suggest that UTI levels are not directly correlated with renal function or, otherwise, that they may increase before the onset of renal impairment in diabetes, representing a potential marker for the underlying inflammatory condition