2 research outputs found

    Intratumoral bacteria may elicit chemoresistance by metabolizing anticancer agents

    No full text
    We recently reported that bacteria can be found within pancreatic ductal adenocarcinoma (PDAC) tumors. Some of these bacteria can metabolize and thereby inactivate the nucleoside analog gemcitabine. We demonstrated that the long isoform of the bacterial enzyme cytidine deaminase (CDD) mediates the metabolism of gemcitabine. The clinical effect of overcoming this potential mechanism of drug resistance has yet to be studied

    Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine

    No full text
    Growing evidence suggests that microbes can influence the efficacy of cancer therapies. By studying colon cancer models, we found that bacteria can metabolize the chemotherapeutic drug gemcitabine (2′,2′-difluorodeoxycytidine) into its inactive form, 2′,2′-difluorodeoxyuridine. Metabolism was dependent on the expression of a long isoform of the bacterial enzyme cytidine deaminase (CDD L ), seen primarily in Gammaproteobacteria. In a colon cancer mouse model, gemcitabine resistance was induced by intratumor Gammaproteobacteria, dependent on bacterial CDD L expression, and abrogated by cotreatment with the antibiotic ciprofloxacin. Gemcitabine is commonly used to treat pancreatic ductal adenocarcinoma (PDAC), and we hypothesized that intratumor bacteria might contribute to drug resistance of these tumors. Consistent with this possibility, we found that of the 113 human PDACs that were tested, 86 (76%) were positive for bacteria, mainly Gammaproteobacteria
    corecore