2,142 research outputs found

    Quantum corrections to the Classical Statistical Approximation for the expanding quantum field

    Full text link
    We found the deviation of the equation of state from ultrarelativistic one due to quantum corrections for a nonequilibrium longitudinally expanding scalar field. Relaxation of highly excited quantum field is usually described in terms of Classical Statistical Approximation (CSA). However, the expansion of the system reduces the applicability of such a semiclassical approach as the CSA making quantum corrections important. We calculate the evolution of the trace of the energy-momentum tensor within the Keldysh-Schwinger framework for static and longitudinal expanding geometries. We provide analytical and numerical arguments for the appearance of the nontrivial intermediate regime where quantum corrections are significant

    QCD partition function in the external field in the covariant gauge

    Full text link
    The QCD partition function in the external stationary gluomagnetic field is computed in the third order in external field invariants in arbitrary dimension and arbitrary covariant gauge. The contributions proportional to third order invariants in gluon field strength are shown to be dependent on covariant quantum gauge fixing parameter \alph

    QCD Heat Kernel in Covariant Gauge

    Full text link
    We report the calculation of the fourth coefficient in an expansion of the heat kernel of a non-minimal, non-abelian kinetic operator in an arbitrary background gauge in arbitrary space-time dimension. The fourth coefficient is shown to bring a nontrivial gauge dependence due to the contribution of the lowest order off-shell gauge invariant structure.Comment: 6 pages + title page, standart LaTe

    Default contagion risks in Russian interbank market

    Full text link
    Systemic risks of default contagion in the Russian interbank market are investigated. The analysis is based on considering the bow-tie structure of the weighted oriented graph describing the structure of the interbank loans. A probabilistic model of interbank contagion explicitly taking into account the empirical bow-tie structure reflecting functionality of the corresponding nodes (borrowers, lenders, borrowers and lenders simultaneously), degree distributions and disassortativity of the interbank network under consideration based on empirical data is developed. The characteristics of contagion-related systemic risk calculated with this model are shown to be in agreement with those of explicit stress tests.Comment: Final version, to appear in Physica
    • …
    corecore