13 research outputs found
J- vs. H-type assembly: pentamethine cyanine (Cy5) as a near-IR chiroptical reporter
The DNA-enabled dimerization of pentamethine cyanine (Cy5) dyes was studied by optical methods. The value of cyanine as a chiroptical reporter using a monomer-to-dimer switch is demonstrated. The specific shape of the CD signal and its high intensity are a result of J-type assembly
Synthesis, Spectral Properties, and Detection Limits of Reactive Squaraine Dyes, a New Class of Diode Laser Compatible Fluorescent Protein Labels
We describe the synthesis and spectral characterization of two reactive long-wavelength fluorescence labels (Sq635-m and Sq635-b), having either one or two N-hydroxysuccinimidyl esters. Both are squaraine derivatives and consist of a cyanine-type chromophore and a central squarate bridge. To improve water solubility, we introduced two sulfonic acid groups into the heterocyclic ring systems, and for covalent attachment to proteins, a reactive N-hydroxy-succinimide ester (NHS ester) was synthesized. The squaraine markers exhibit low quantum yields in water (φ = 0.15) and high quantum yields (φ = 0.6−0.7) when bound to proteins. The absorption maxima at 635 nm in water and at approximately 645 nm when bound to proteins allow excitation with commercially available diode lasers. The detection limit of a representative squaraine dye in blood was estimated to be half that of a commonly used fluorophore
Stability of Rhodamine Lactone Cycle in Solutions: Chain–Ring Tautomerism, Acid–Base Equilibria, Interaction with Lewis Acids, and Fluorescence
The equilibrium between different tautomers that can be colored or colorless is an important feature for rhodamine dyes. Presently, this phenomenon is mostly discussed for rhodamine B. Herein, we studied the tautomerism and acid–base dissociation (HR+ ⇄ R + H+) of a set of rhodamines in organic media. Form R is an equilibrium mixture of the colored zwitterion R± and colorless lactone R0. Absorption spectra in 90 mass% aqueous acetone reflects the correlation between the dyes structure and the equilibrium constant, KT = [R0]/[R±]. Increase in the pKa value on transferring from water to organic solvents confirms the highly polar character of the R± tautomer. To reveal the role of the solvent nature, the tautomerism of an asymmetrical rhodamine, 2-(12-(diethyliminio)-2,3,5,6,7,12-hexahydro-1H-chromeno[2,3-f]pyrido[3,2,1-ij]quinolin-9-yl)benzoate, was examined in 14 media. This chain–ring tautomerism is an intramolecular acid–base reaction; the central carbon atom acts as a Lewis acid. The interaction with other Lewis acids, Li+, Ca2+, Mg2+, and La3+, results in rupture of lactone cycle. In polar solvents, lactones undergo photocleavage resulting in formation of highly fluorescent R±, whereas the blue fluorescence and abnormally high Stokes shift in low-polar media may be explained either by another photoreaction or by spiroconjugation and charge transfer in the exited state
Effect of Solubilizing Group on the Antibacterial Activity of Heptamethine Cyanine Photosensitizers
Antibiotic resistance of pathogenic bacteria dictates the development of novel treatment modalities such as antimicrobial photodynamic therapy (APDT) utilizing organic dyes termed photosensitizers that exhibit a high cytotoxicity upon light irradiation. Most of the clinically approved photosensitizers are porphyrins that are poorly excitable in the therapeutic near-IR spectral range. In contrast, cyanine dyes function well in the near-IR region, but their phototoxicity, in general, is very low. The introduction of iodine atoms in the cyanine molecules was recently demonstrated to greatly increase their phototoxicity. Herein, we synthesized a series of the new iodinated heptamethine cyanine dyes (ICy7) containing various solubilizing moieties, i.e., negatively charged carboxylic (ICy7COOH) and sulfonic (ICy7SO3H) groups, positively charged triphenylphosphonium (ICy7PPh3), triethylammonium (ICy7NEt3) and amino (ICy7NH2) groups, and neutral amide (ICy7CONHPr) group. The effect of these substituents on the photodynamic eradication of Gram-positive (S. aureus) and Gram-negative (E. coli and P. aeruginosa) pathogens was studied. Cyanine dyes containing the amide and triphenylphosphonium groups were found to be the most efficient for eradication of the investigated bacteria. These dyes are effective at low concentrations of 0.05 µM (33 J/cm2) for S. aureus, 50 µM (200 J/cm2) for E. coli, and 5 µM (100 J/cm2) for P. aeruginosa and considered, therefore, promising photosensitizers for APDT applications. The innovation of the new photosensitizers consisted of a combination of the heavy-atom effect that increases singlet oxygen generation with the solubilizing group’s effect improving cell uptake, and with effective near-IR excitation. Such a combination helped to noticeably increase the APDT efficacy and should pave the way for the development of more advanced photosensitizers for clinical use
Novel Cyclic Peptides for Targeting EGFR and EGRvIII Mutation for Drug Delivery
The epidermal growth factor–epidermal growth factor receptor (EGF-EGFR) pathway has become the main focus of selective chemotherapeutic intervention. As a result, two classes of EGFR inhibitors have been clinically approved, namely monoclonal antibodies and small molecule kinase inhibitors. Despite an initial good response rate to these drugs, most patients develop drug resistance. Therefore, new treatment approaches are needed. In this work, we aimed to find a new EGFR-specific, short cyclic peptide, which could be used for targeted drug delivery. Phage display peptide technology and biopanning were applied to three EGFR expressing cells, including cells expressing the EGFRvIII mutation. DNA from the internalized phage was extracted and the peptide inserts were sequenced using next-generation sequencing (NGS). Eleven peptides were selected for further investigation using binding, internalization, and competition assays, and the results were confirmed by confocal microscopy and peptide docking. Among these eleven peptides, seven showed specific and selective binding and internalization into EGFR positive (EGFR+ve) cells, with two of them—P6 and P9—also demonstrating high specificity for non-small cell lung cancer (NSCLC) and glioblastoma cells, respectively. These peptides were chemically conjugated to camptothecin (CPT). The conjugates were more cytotoxic to EGFR+ve cells than free CPT. Our results describe a novel cyclic peptide, which can be used for targeted drug delivery to cells overexpressing the EGFR and EGFRvIII mutation
Chem Commun (Camb)
A rational design of squaraine dyes with lipophilic and zwitterionic groups tunes cell entry, allowing for selective far-red/near-infrared imaging of plasma membrane vs. endoplasmic reticulum. They exhibit up to 110-fold fluorescence enhancement in biomembranes and enable cellular imaging at 1 nM concentration, which make them the brightest membrane probes to date