5 research outputs found

    Two Isoforms of Drosophila TRF2 Are Involved in Embryonic Development, Premeiotic Chromatin Condensation, and Proper Differentiation of Germ Cells of Both Sexes

    No full text
    The Drosophila TATA box-binding protein (TBP)-related factor 2 (TRF2 or TLF) was shown to control a subset of genes different from that controlled by TBP. Here, we have investigated the structure and functions of the trf2 gene. We demonstrate that it encodes two protein isoforms: the previously described 75-kDa TRF2 and a newly identified 175-kDa version in which the same sequence is preceded by a long N-terminal domain with coiled-coil motifs. Chromatography of Drosophila embryo extracts revealed that the long TRF2 is part of a multiprotein complex also containing ISWI. Both TRF2 forms are detected at the same sites on polytene chromosomes and have the same expression patterns, suggesting that they fulfill similar functions. A study of the manifestations of the trf2 mutation suggests an essential role of TRF2 during embryonic Drosophila development. The trf2 gene is strongly expressed in germ line cells of adult flies. High levels of TRF2 are found in nuclei of primary spermatocytes and trophocytes with intense transcription. In ovaries, TRF2 is present both in actively transcribing nurse cells and in the transcriptionally inactive oocyte nuclei. Moreover, TRF2 is essential for premeiotic chromatin condensation and proper differentiation of germ cells of both sexes

    Mechanical Damage to Electric Compressors and Their Relationship with the Duration of the First Phase of Launch

    No full text
    ΠœΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½Ρ– пошкодТСння Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ΄Π²ΠΈΠ³ΡƒΠ½Ρ–Π² компрСсорів Ρ‚Π° Ρ—Ρ… зв’язок Π· Ρ‚Ρ€ΠΈΠ²Π°Π»Ρ–ΡΡ‚ΡŽ ΠΏΠ΅Ρ€ΡˆΠΎΠ³ΠΎ Π΅Ρ‚Π°ΠΏΡƒ пуску / Π›. Π’. Π”ΡƒΠ±ΠΈΠ½Π΅Ρ†ΡŒ, А. М. ΠœΡƒΡ…Π°, Π . Π’. ΠšΡ€Π°ΡΠ½ΠΎΠ², Π”. Π’. УстимСнко, О. О. ΠšΠ°Ρ€Π·ΠΎΠ²Π° // ΠšΠΎΠΌΡƒΠ½Π°Π»ΡŒΠ½Π΅ господарство міст: Наук.-Ρ‚Π΅Ρ…Π½. Π·Π±. / Π₯ΠΠ£ΠœΠ“ Ρ–ΠΌ. А. Π‘Π΅ΠΊΠ΅Ρ‚ΠΎΠ²Π°. Π₯., – 2013. – Π’ΠΈΠΏ. 109. – Π‘. 122-127.UK: Π”ΠΎΡΠ»Ρ–Π΄ΠΆΡƒΡ”Ρ‚ΡŒΡΡ Π²ΠΏΠ»ΠΈΠ² ΠΏΡ–Π΄Π²ΠΈΡ‰Π΅Π½ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρƒ ΠΎΠΏΠΎΡ€Ρƒ ΠΌΠ΅Ρ…Π°Π½Ρ–Π·ΠΌΡƒ компрСсора Π½Π° Ρ‚Ρ€ΠΈΠ²Π°Π»Ρ–ΡΡ‚ΡŒ ΠΏΠ΅Ρ€ΡˆΠΎΠ³ΠΎ Π΅Ρ‚Π°ΠΏΡƒ пуску Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ΄Π²ΠΈΠ³ΡƒΠ½Π°, Π° Ρ‚Π°ΠΊΠΎΠΆ Π·Π²'язок ΠΌΡ–ΠΆ Ρ‚Ρ€ΠΈΠ²Π°Π»Ρ–ΡΡ‚ΡŽ ΠΏΠ΅Ρ€ΡˆΠΎΠ³ΠΎ Π΅Ρ‚Π°ΠΏΡƒ пуску Ρ‚Π° пов’язаними Ρ–Π· Ρ†ΠΈΠΌ ΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½ΠΈΠΌΠΈ пошкодТСннями, Ρ‰ΠΎ ΠΌΠ°ΡŽΡ‚ΡŒ місцС Π² Ρ€Π΅Π°Π»ΡŒΠ½ΠΈΡ… ΡƒΠΌΠΎΠ²Π°Ρ… Сксплуатації Ρ€ΡƒΡ…ΠΎΠΌΠΎΠ³ΠΎ складу. Π—Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎ використовувати Ρ‚Ρ€ΠΈΠ²Π°Π»Ρ–ΡΡ‚ΡŒ ΠΏΠ΅Ρ€ΡˆΠΎΠ³ΠΎ Π΅Ρ‚Π°ΠΏΡƒ пуску Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ΄Π²ΠΈΠ³ΡƒΠ½Π° компрСсора як ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€, Ρ‰ΠΎ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡ” Ρ‚Π΅Ρ…Π½Ρ–Ρ‡Π½ΠΈΠΉ стан ΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½ΠΎΡ— частини компрСсора ΠΏΡ€ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ– діагностування обладнання Ρ€ΡƒΡ…ΠΎΠΌΠΎΠ³ΠΎ складу.RU: Π˜ΡΡΠ»Π΅Π΄ΡƒΠ΅Ρ‚ΡΡ влияниС ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½Ρ‚Π° сопротивлСния ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° компрСссора Π½Π° Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ этапа пуска элСктродвигатСля, Π° Ρ‚Π°ΠΊΠΆΠ΅ связь ΠΌΠ΅ΠΆΠ΄Ρƒ Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ этапа пуска ΠΈ связанными с этим мСханичСскими поврСТдСниями, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΈΠΌΠ΅ΡŽΡ‚ мСсто Π² Ρ€Π΅Π°Π»ΡŒΠ½Ρ‹Ρ… условиях эксплуатации ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΠ³ΠΎ состава. ΠŸΡ€Π΅Π΄Π»Π°Π³Π°Π΅Ρ‚ΡΡ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ этапа пуска ΠΊΠ°ΠΊ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰ΠΈΠΉ тСхничСскоС состояниС мСханичСской части компрСссора ΠΏΡ€ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ диагностики оборудования ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΠ³ΠΎ состава.EN: The article shows the study of the effect of high modulus compressor mechanism for the duration of the first stage motor starting, and the relationship between the duration of the first phase of launch, and associated mechanical injuries that occur in the real exploitation of rolling stock. It is proposed to use the duration of the first stage of starting as a parameter characterizing the technical conditions of the compressor during diagnostic equipment vehicles

    Loss of signal during intraoperative neuromonitoring of laryngeal nerves as a predictor of postoperative larynx paresis: Analysis of 1065 consequetive thyroid and parathyroid operations. Surgeons' algorythm (tactics)

    No full text
    During thyroid and parathyroid operations performed with laryngeal nerves neuromonitoring, a segmental or global loss of signal may occur. The most frequent cause of loss of signal – is tension of thyroid gland tissue and at the same time tension of the laryngeal nerves. There is no consensus if this complication arises regarding surgeon’s actions. Aim. Evaluation of predictive value of loss of signal during IONM regarding larynx paresis in postoperative period, and algorithm suggestion in case of loss of signal develops. Materials and methods. 1065 patients were operated on thyroid and parathyroid glands with neuromonitoring of laryngeal nerves. Neuromonitore C2 (Inomed, Emmendingen, Germany) was used. We evaluated frequency of loss of signal, described types of loss of signal, showed sensitivity and specificity of loss of signal and development of postoperative larynx paresis. Results. Loss of signal developed in 32 (1,9%) patients. More frequently loss of signal was detected at left side (p=0,01, Ο‡2 = 4,2 OR=2,9). Sensitivity (Se) Β of loss of signal and postoperative larynx paresis development reached 59,2%, specificity – 99,7% (Sp), positive predicitive value (PPV) – 91,4%, negative predictive value (NPV) – 97,8%. There are no statistically reliable differences in recovery periods of larynx function depending on type of loss of signal (segmental or global) (p=0,5). Conclusions. In most cases loss of electromyographical signal indicates injury of laryngeal nerves during operation on thyroid and parathyroid glands. When there is loss of signal in case of bilateral thyroid gland disease it is reasonable to make a decision to stop operation to prevent development of bilateral larynx paresis
    corecore