12 research outputs found

    Onset of Fast Magnetic Reconnection in Partially Ionized Gases

    Full text link
    We consider quasi-stationary two-dimensional magnetic reconnection in a partially ionized incompressible plasma. We find that when the plasma is weakly ionized and the collisions between the ions and the neutral particles are significant, the transition to fast collisionless reconnection due to the Hall effect in the generalized Ohm's law is expected to occur at much lower values of the Lundquist number, as compared to a fully ionized plasma case. We estimate that these conditions for fast reconnection are satisfied in molecular clouds and in protostellar disks.Comment: 19 pages, 1 figure, 1 tabl

    Model of two-fluid reconnection

    Full text link
    A theoretical model of quasi-stationary, two-dimensional magnetic reconnection is presented in the framework of incompressible two-fluid magnetohydrodynamics (MHD). The results are compared with recent numerical simulations and experiment.Comment: 4 pages, 1 figure, accepted to Physical Review Letter

    Amplification of magnetic fields by dynamo action in Gaussian-correlated helical turbulence

    Full text link
    We investigate the growth and structure of magnetic fields amplified by kinematic dynamo action in turbulence with non-zero kinetic helicity. We assume a simple Gaussian velocity correlation tensor, which allows us to consider very large magnetic Reynolds numbers, up to one trillion. We use the kinematic Kazantsev-Kraichnan model of dynamo and find a complete numerical solution for the correlation functions of growing magnetic fields.Comment: 7 pages, 3 figure

    Magnetic reconnection with anomalous resistivity in two-and-a-half dimensions I: Quasi-stationary case

    Full text link
    In this paper quasi-stationary, two-and-a-half-dimensional magnetic reconnection is studied in the framework of incompressible resistive magnetohydrodynamics (MHD). A new theoretical approach for calculation of the reconnection rate is presented. This approach is based on local analytical derivations in a thin reconnection layer, and it is applicable to the case when resistivity is anomalous and is an arbitrary function of the electric current and the spatial coordinates. It is found that a quasi-stationary reconnection rate is fully determined by a particular functional form of the anomalous resistivity and by the local configuration of the magnetic field just outside the reconnection layer. It is also found that in the special case of constant resistivity reconnection is Sweet-Parker and not Petschek.Comment: 15 pages, 4 figures, minor changes as compared to the 1st versio

    A model of Hall reconnection

    Full text link
    The rate of quasi-stationary, two-dimensional magnetic reconnection is calculated in the framework of incompressible Hall magnetohydrodynamics (MHD). The calculation is based on the solution of Hall-MHD equations that include Hall and electron pressure terms for electric current. These equations are solved in a local region across the reconnection electron layer, including only the upstream region and the layer center. In the case when the ion inertial length d_i is larger than the Sweet-Parker reconnection layer thickness, the dimensionless reconnection rate is found to be independent of the electrical resistivity and equal to d_i/L, where L is the scale length of the external magnetic field in the upstream region outside the electron layer.Comment: 4 pages, 1 figur

    Fast and slow two-fluid magnetic reconnection

    Full text link
    We present a two-fluid magnetohydrodynamics (MHD) model of quasi-stationary, two-dimensional magnetic reconnection in an incompressible plasma composed of electrons and ions. We find two distinct regimes of slow and fast reconnection. The presence of these two regimes can provide a possible explanation for the initial slow build up and subsequent rapid release of magnetic energy frequently observed in cosmic and laboratory plasmas.Comment: 16 pages, 2 figures, 1 tabl

    On the two-dimensional magnetic reconnection with nonuniform resistivity

    Get PDF
    In this paper two theoretical approaches for the calculation of the rate of quasi-stationary, two-dimensional magnetic reconnection with nonuniform anomalous resistivity are considered in the framework of incompressible magnetohydrodynamics (MHD). In the first, ``global'' equations approach the MHD equations are approximately solved for a whole reconnection layer, including the upstream and downstream regions and the layer center. In the second, ``local'' equations approach the equations are solved across the reconnection layer, including only the upstream region and the layer center. Both approaches give the same approximate answer for the reconnection rate. Our theoretical model is in agreement with the results of recent simulations of reconnection with spatially nonuniform resistivity by Baty, Priest and Forbes (2006), contrary to their conclusions.Comment: 7 pages, 1 figur

    Magnetized Turbulent Dynamo in Protogalaxies

    Get PDF
    The prevailing theory for the origin of cosmic magnetic fields is that they have been amplified to their present values by the turbulent dynamo inductive action in the protogalactic and galactic medium. Up to now, in calculation of the turbulent dynamo, it has been customary to assume that there is no back reaction of the magnetic field on the turbulence, as long as the magnetic energy is less than the turbulent kinetic energy. This assumption leads to the kinematic dynamo theory. However, the applicability of this theory to protogalaxies is rather limited. The reason is that in protogalaxies the temperature is very high, and the viscosity is dominated by magnetized ions. As the magnetic field strength grows in time, the ion cyclotron time becomes shorter than the ion collision time, and the plasma becomes strongly magnetized. As a result, the ion viscosity becomes the Braginskii viscosity. Thus, in protogalaxies the back reaction sets in much earlier, at field strengths much lower than those which correspond to field-turbulence energy equipartition, and the turbulent dynamo becomes what we call the magnetized turbulent dynamo. In this paper we lay the theoretical groundwork for the magnetized turbulent dynamo. In particular, we predict that the magnetic energy growth rate in the magnetized dynamo theory is up to ten time larger than that in the kinematic dynamo theory. We also briefly discuss how the Braginskii viscosity can aid the development of the inverse cascade of magnetic energy after the energy equipartition is reached.Comment: accepted to ApJ, 35 pages, 3 figure
    corecore