62 research outputs found

    Polarization effects in the nonlinear interference of down-converted photons

    Full text link
    We study polarization effects in the nonlinear interference of photons generated via frequency non-degenerate spontaneous parametric down conversion. Signal and idler photons generated in the visible and infrared (IR) range, are split in different arms of a nonlinear Michelson interferometer. The interference pattern for signal photons is detected, and it is shown to be dependent on the polarization rotation of idler photons, introduced by a birefringent sample. Based on this concept, we realize two new methods for measurement of sample retardation in the IR range by using well-developed and inexpensive components for visible light. The accuracy of the methods meets current industry standards. The developed IR polarimetry technique is relevant to material research, optical inspection, and quality control.Comment: Submitted for publicatio

    Quantum spectroscopy of plasmonic nanostructures

    Full text link
    We use frequency entangled photons, generated via spontaneous parametric down conversion, to measure the broadband spectral response of an array of gold nanoparticles exhibiting Fano-type plasmon resonance. Refractive index sensing of a liquid is performed by measuring the shift of the array resonance. This method is robust in excessively noisy conditions compared with conventional broadband transmission spectroscopy. Detection of a refractive index change is demonstrated with a noise level 70 times higher than the signal, which is shown to be inaccessible with the conventional transmission spectroscopy. Use of low photon fluxes makes this method suitable for measurements of photosensitive bio-samples and chemical substances.Comment: 11 pages, 5 figure

    Measurement of infrared optical constants with visible photons

    Full text link
    We demonstrate a new scheme of infrared spectroscopy with visible light sources and detectors. The technique relies on the nonlinear interference of correlated photons, produced via spontaneous parametric down conversion in a nonlinear crystal. Visible and infrared photons are split into two paths and the infrared photons interact with the sample under study. The photons are reflected back to the crystal, resembling a conventional Michelson interferometer. Interference of the visible photons is observed and it is dependent on the phases of all three interacting photons: pump, visible and infrared. The transmission coefficient and the refractive index of the sample in the infrared range can be inferred from the interference pattern of visible photons. The method does not require the use of potentially expensive and inefficient infrared detectors and sources, it can be applied to a broad variety of samples, and it does not require a priori knowledge of sample properties in the visible range
    • …
    corecore