3 research outputs found

    Effect of nonmagnetic and magnetic impurities on the specific heat jump in anisotropic superconductors

    Full text link
    The specific-heat jump ΔC\Delta C at a critical temperature TcT_c in an anisotropic superconductor containing both potential and spin-flip scatterers is calculated within a weak-coupling mean-field approximation. It is shown that the presence of even a small amount of spin-flip scatterers in the sample leads to a drastic change in the dependence of ΔC\Delta C on TcT_c in a disordered (d+s)(d+s)-wave or a strongly anisotropic s-wave superconductor. The implications for experimental tests for the presence of an s-wave admixture in the superconducting order parameter of high-TcT_c superconductors are discussed.Comment: 9 pages, 5 figure

    Resonant electron transfer between quantum dots

    Full text link
    An interaction of electromagnetic field with a nanostructure composed of two quantum dots is studied theoretically. An effect of a resonant electron transfer between the localized low-lying states of quantum dots is predicted. A necessary condition for such an effect is the existence of an excited bound state whose energy lies close to the top of the barrier separating the quantum dots. This effect may be used to realize the reversible quantum logic gate NOT if the superposition of electron states in different quantum dots is viewed as the superposition of bits 0 and 1.Comment: 8 pages, 1 EPS-figure, submitted to Phys. Rev.

    Critical temperature of an anisotropic superconductor containing both nonmagnetic and magnetic impurities

    Full text link
    The combined effect of both nonmagnetic and magnetic impurities on the superconducting transition temperature is studied theoretically within the BCS model. An expression for the critical temperature as a function of potential and spin-flip scattering rates is derived for a two-dimensional superconductor with arbitrary in-plane anisotropy of the superconducting order parameter, ranging from isotropic s-wave to d-wave (or any pairing state with nonzero angular momentum) and including anisotropic s-wave and mixed (d+s)-wave as particular cases. This expression generalizes the well-known Abrikosov-Gor'kov formula for the critical temperature of impure superconductors. The effect of defects and impurities in high temperature superconductors is discussed.Comment: 4 eps figure
    corecore