2,547 research outputs found
Quantum levitation by left-handed metamaterials
Left-handed metamaterials make perfect lenses that image classical
electromagnetic fields with significantly higher resolution than the
diffraction limit. Here we consider the quantum physics of such devices. We
show that the Casimir force of two conducting plates may turn from attraction
to repulsion if a perfect lens is sandwiched between them. For optical
left-handed metamaterials this repulsive force of the quantum vacuum may
levitate ultra-thin mirrors
Ultrahigh sensitivity of slow-light gyroscope
Slow light generated by Electromagnetically Induced Transparency is extremely
susceptible with respect to Doppler detuning. Consequently, slow-light
gyroscopes should have ultrahigh sensitivity
Light Rays at Optical Black Holes in Moving Media
Light experiences a non-uniformly moving medium as an effective gravitational
field, endowed with an effective metric tensor , being the refractive index and the
four-velocity of the medium. Leonhardt and Piwnicki [Phys. Rev. A {\bf 60},
4301 (1999)] argued that a flowing dielectric fluid of this kind can be used to
generate an 'optical black hole'. In the Leonhardt-Piwnicki model, only a
vortex flow was considered. It was later pointed out by Visser [Phys. Rev.
Lett. {\bf 85}, 5252 (2000)] that in order to form a proper optical black hole
containing an event horizon, it becomes necessary to add an inward radial
velocity component to the vortex flow. In the present paper we undertake this
task: we consider a full spiral flow, consisting of a vortex component plus a
radially infalling component. Light propagates in such a dielectric medium in a
way similar to that occurring around a rotating black hole. We calculate, and
show graphically, the effective potential versus the radial distance from the
vortex singularity, and show that the spiral flow can always capture light in
both a positive, and a negative, inverse impact parameter interval. The
existence of a genuine event horizon is found to depend on the strength of the
radial flow, relative to the strength of the azimuthal flow. A limitation of
our fluid model is that it is nondispersive.Comment: 30 pages, LaTeX, 4 ps figures. Expanded discussion especially in
section 6; 5 new references. Version to appear in Phys. Rev.
Fermat's principle of least time in the presence of uniformly moving boundaries and media
The refraction of a light ray by a homogeneous, isotropic and non-dispersive
transparent material half-space in uniform rectilinear motion is investigated
theoretically. The approach is an amalgamation of the original Fermat's
principle and the fact that an isotropic optical medium at rest becomes
optically anisotropic in a frame where the medium is moving at a constant
velocity. Two cases of motion are considered: a) the material half-space is
moving parallel to the interface; b) the material half-space is moving
perpendicular to the interface. In each case, a detailed analysis of the
obtained refraction formula is provided, and in the latter case, an intriguing
backward refraction of light is noticed and thoroughly discussed. The results
confirm the validity of Fermat's principle when the optical media and the
boundaries between them are moving at relativistic speeds.Comment: 11 pages, 6 figures, RevTeX 4, comments welcome; V2: revised, Fig. 7
added; V3: several typos corrected, accepted for publication in European
Journal of Physics (online at: http://stacks.iop.org/EJP/28/933
The group approach to AdS space propagators: A fast algorithm
In this letter we show how the method of [4] for the calculation of two-point
functions in d+1-dimensional AdS space can be simplified. This results in an
algorithm for the evaluation of the two-point functions as linear combinations
of Legendre functions of the second kind. This algorithm can be easily
implemented on a computer. For the sake of illustration, we displayed the
results for the case of symmetric traceless tensor fields with rank up to l=4.Comment: 14 pages, comment adde
Comment on "Quantum Friction - Fact or Fiction?"
If quantum friction existed [J.B. Pendry, New J. Phys. 12, 033028 (2010)] an
unlimited amount of useful energy could be extracted from the quantum vacuum
and Lifshitz theory would fail. Both are unlikely to be true.Comment: Comment on J.B. Pendry, New J. Phys. 12, 033028 (2010
Operational Theory of Homodyne Detection
We discuss a balanced homodyne detection scheme with imperfect detectors in
the framework of the operational approach to quantum measurement. We show that
a realistic homodyne measurement is described by a family of operational
observables that depends on the experimental setup, rather than a single field
quadrature operator. We find an explicit form of this family, which fully
characterizes the experimental device and is independent of a specific state of
the measured system. We also derive operational homodyne observables for the
setup with a random phase, which has been recently applied in an ultrafast
measurement of the photon statistics of a pulsed diode laser. The operational
formulation directly gives the relation between the detected noise and the
intrinsic quantum fluctuations of the measured field. We demonstrate this on
two examples: the operational uncertainty relation for the field quadratures,
and the homodyne detection of suppressed fluctuations in photon statistics.Comment: 7 pages, REVTe
Photon number discrimination without a photon counter and its application to reconstructing non-Gaussian states
The non-linearity of a conditional photon-counting measurement can be used to
`de-Gaussify' a Gaussian state of light. Here we present and experimentally
demonstrate a technique for photon number resolution using only homodyne
detection. We then apply this technique to inform a conditional measurement;
unambiguously reconstructing the statistics of the non-Gaussian one and two
photon subtracted squeezed vacuum states. Although our photon number
measurement relies on ensemble averages and cannot be used to prepare
non-Gaussian states of light, its high efficiency, photon number resolving
capabilities, and compatibility with the telecommunications band make it
suitable for quantum information tasks relying on the outcomes of mean values.Comment: 4 pages, 3 figures. Theory section expanded in response to referee
comment
Quantum cryptography with squeezed states
A quantum key distribution scheme based on the use of displaced squeezed
vacuum states is presented. The states are squeezed in one of two field
quadrature components, and the value of the squeezed component is used to
encode a character from an alphabet. The uncertainty relation between
quadrature components prevents an eavesdropper from determining both with
enough precision to determine the character being sent. Losses degrade the
performance of this scheme, but it is possible to use phase-sensitive
amplifiers to boost the signal and partially compensate for their effect.Comment: 15 pages, no figure
- …