17,397 research outputs found

    The business firm: the bureaucracy and the clan

    Get PDF
    This paper establishes a parallel between Max Weber's bureaucratic and traditional forms of domination, on the one hand, and the distinction between Western and Japanese management, on the other. Just as bureaucracy, so Western management theory and practice have been fundamentally guided by Zweckrationalität, often called instrumental rationality; and just as the traditional organization, so Japanese management is quickened by the kinship spirit. The parallel ceases, however, where this paper maintains that the traditional (kinship) organization is both rational and modern, or 'modernizable', without having to mutate into Weber's impersonal bureaucracy. Weber's instrumental-rationalism reduced the ideal-type of the traditional organization to a residual, counter-concept of the bureaucracy and the bureaucracy, in its turn, to a dehumanized 'thing'. In the current scene, despite clear and express efforts at overcoming the admitted inadequacies of the bureaucratic mind-set, Western management theory and practice seem unable to escape the grip of instrumental rationality. Even though the efforts at moving away from the bureaucracy are efforts at being more 'traditional', the debunking language against the 'traditional' continues. There is a need to supplement the critique of instrumental rationality that is currently taking place in some quarters with a positive reconstruction of the traditional (kinship) organization. The two-pronged approach may open up more management and organization alternatives on the micro-level of the modem business firm which is the immediate concern of this paper. Th.ere are signs that the need is beginning to be felt and, more importantly, to be addressed. --

    The non-zero energy of 2+1 Minkowski space

    Full text link
    We compute the energy of 2+1 Minkowski space from a covariant action principle. Using Ashtekar and Varadarajan's characterization of 2+1 asymptotic flatness, we first show that the 2+1 Einstein-Hilbert action with Gibbons-Hawking boundary term is both finite on-shell (apart from past and future boundary terms) and stationary about solutions under arbitrary smooth asymptotically flat variations of the metric. Thus, this action provides a valid variational principle and no further boundary terms are required. We then obtain the gravitational Hamiltonian by direct computation from this action. The result agrees with the Hamiltonian of Ashtekar and Varadarajan up to an overall addititve constant. This constant is such that 2+1 Minkowski space is assigned the energy E = -1/4G, while the upper bound on the energy is set to zero. Any variational principle with a boundary term built only from the extrinsic and intrinsic curvatures of the boundary is shown to lead to the same result. Interestingly, our result is not the flat-space limit of the corresponding energy -1/8G of 2+1 anti-de Sitter space.Comment: 16 pages, minor change

    Directed transport of active particles over asymmetric energy barriers

    Full text link
    We theoretically and numerically investigate the transport of active colloids to target regions, delimited by asymmetric energy barriers. We show that it is possible to introduce a generalized effective temperature that is related to the local variance of particle velocities. The stationary probability distributions can be derived from a simple diffusion equation in the presence of an inhomogeneous effective temperature resulting from the action of external force fields. In particular, transitions rates over asymmetric energy barriers can be unbalanced by having different effective temperatures over the two slopes of the barrier. By varying the type of active noise, we find that equal values of diffusivity and persistence time may produce strongly varied effective temperatures and thus stationary distributions

    Correlation of inflation-produced magnetic fields with scalar fluctuations

    Get PDF
    If the conformal invariance of electromagnetism is broken during inflation, then primordial magnetic fields may be produced. If this symmetry breaking is generated by the coupling between electromagnetism and a scalar field---e.g. the inflaton, curvaton, or the Ricci scalar---then these magnetic fields may be correlated with primordial density perturbations, opening a new window to the study of non-gaussianity in cosmology. In order to illustrate, we couple electromagnetism to an auxiliary scalar field in a de Sitter background. We calculate the power spectra for scalar-field perturbations and magnetic fields, showing how a scale-free magnetic field spectrum with rms amplitude of ~nG at Mpc scales may be achieved. We explore the Fourier-space dependence of the cross-correlation between the scalar field and magnetic fields, showing that the dimensionless amplitude, measured in units of the power spectra, can grow as large as ~500 H_I/M, where H_I is the inflationary Hubble constant and M is the effective mass scale of the coupling.Comment: 11 pages, 3 pdf figure

    Aging under Shear: Structural Relaxation of a Non-Newtonian Fluid

    Full text link
    The influence of an applied shear field on the dynamics of an aging colloidal suspension has been investigated by the dynamic light scattering determination of the density autocorrelation function. Though a stationary state is never observed, the slow dynamics crosses between two different non-equilibrium regimes as soon as the structural relaxation time approaches the inverse shear rate. In the shear dominated regime (at high shear rate values) the structural relaxation time is found to be strongly sensitive to shear rate while aging proceeds at a very slow rate. The effect of shear on the detailed shape of the density autocorrelation function is quantitatively described assuming that the structural relaxation process arises from the heterogeneous superposition of many relaxing units each one independently coupled to shear with a parallel composition rule for timescales.Comment: 5 pages, 5 figure

    Run-and-tumble particles in speckle fields

    Full text link
    The random energy landscapes developed by speckle fields can be used to confine and manipulate a large number of micro-particles with a single laser beam. By means of molecular dynamics simulations, we investigate the static and dynamic properties of an active suspension of swimming bacteria embedded into speckle patterns. Looking at the correlation of the density fluctuations and the equilibrium density profiles, we observe a crossover phenomenon when the forces exerted by the speckles are equal to the bacteria's propulsion

    Effective run-and-tumble dynamics of bacteria baths

    Full text link
    {\it E. coli} bacteria swim in straight runs interrupted by sudden reorientation events called tumbles. The resulting random walks give rise to density fluctuations that can be derived analytically in the limit of non interacting particles or equivalently of very low concentrations. However, in situations of practical interest, the concentration of bacteria is always large enough to make interactions an important factor. Using molecular dynamics simulations, we study the dynamic structure factor of a model bacterial bath for increasing values of densities. We show that it is possible to reproduce the dynamics of density fluctuations in the system using a free run-and-tumble model with effective fitting parameters. We discuss the dependence of these parameters, e.g., the tumbling rate, tumbling time and self-propulsion velocity, on the density of the bath

    Colloidal attraction induced by a temperature gradient

    Full text link
    Colloidal crystals are of extreme importance for applied research, such as photonic crystals technology, and for fundamental studies in statistical mechanics. Long range attractive interactions, such as capillary forces, can drive the spontaneous assembly of such mesoscopic ordered structures. However long range attractive forces are very rare in the colloidal realm. Here we report a novel strong and long ranged attraction induced by a thermal gradient in the presence of a wall. Switching on and off the thermal gradient we can rapidly and reversibly form stable hexagonal 2D crystals. We show that the observed attraction is hydrodynamic in nature and arises from thermal induced slip flow on particle surfaces. We used optical tweezers to directly measure the force law and compare it to an analytic prediction based on Stokes flow driven by Marangoni forces.Comment: 4 pages, 4 figure

    First-passage time of run-and-tumble particles

    Full text link
    We solve the problem of first-passage time for run-and-tumble particles in one dimension. Exact expression is derived for the mean first-passage time in the general case, considering external force-fields and chemotactic-fields, giving rise to space dependent swim-speed and tumble rate. Agreement between theoretical formulae and numerical simulations is obtained in the analyzed case studies -- constant and sinusoidal force fields, constant gradient chemotactic field. Reported findings can be useful to get insights into very different phenomena involving active particles, such as bacterial motion in external fields, intracellular transport, cell migration, animal foraging
    • …
    corecore