7 research outputs found

    Computer-Based Annotation of Putative AraC/XylS-Family Transcription Factors of Known Structure but Unknown Function

    Get PDF
    Currently, about 20 crystal structures per day are released and deposited in the Protein Data Bank. A significant fraction of these structures is produced by research groups associated with the structural genomics consortium. The biological function of many of these proteins is generally unknown or not validated by experiment. Therefore, a growing need for functional prediction of protein structures has emerged. Here we present an integrated bioinformatics method that combines sequence-based relationships and three-dimensional (3D) structural similarity of transcriptional regulators with computer prediction of their cognate DNA binding sequences. We applied this method to the AraC/XylS family of transcription factors, which is a large family of transcriptional regulators found in many bacteria controlling the expression of genes involved in diverse biological functions. Three putative new members of this family with known 3D structure but unknown function were identified for which a probable functional classification is provided. Our bioinformatics analyses suggest that they could be involved in plant cell wall degradation (Lin2118 protein from Listeria innocua, PDB code 3oou), symbiotic nitrogen fixation (protein from Chromobacterium violaceum, PDB code 3oio), and either metabolism of plant-derived biomass or nitrogen fixation (protein from Rhodopseudomonas palustris, PDB code 3mn2)

    Roflumilast in moderate-to-severe chronic obstructive pulmonary disease treated with longacting bronchodilators: two randomised clinical trials

    Get PDF
    Background Patients with chronic obstructive pulmonary disease (COPD) have few options for treatment. The efficacy and safety of the phosphodiesterase-4 inhibitor roflumilast have been investigated in studies of patients with moderate-to-severe COPD, but not in those concomitantly treated with longacting inhaled bronchodilators. The effect of roflumilast on lung function in patients with COPD that is moderate to severe who are already being treated with salmeterol or tiotropium was investigated. Methods In two double-blind, multicentre studies done in an outpatient setting, after a 4-week run-in, patients older than 40 years with moderate-to-severe COPD were randomly assigned to oral roflumilast 500 mu g or placebo once a day for 24 weeks, in addition to salmeterol (M2-127 study) or tiotropium (M2-128 study). The primary endpoint was change in prebronchodilator forced expiratory volume in 1s (FEV(1)). Analysis was by intention to treat. The studies are registered with ClinicalTrials.gov, number NCT00313209 for M2-127, and NCT00424268 for M2-128. Findings In the salmeterol plus roflumilast trial, 466 patients were assigned to and treated with roflumilast and 467 with placebo; in the tiotropium plus roflumilast trial, 371 patients were assigned to and treated with roflumilast and 372 with placebo. Compared with placebo, roflumilast consistently improved mean prebronchodilator FEV(1) by 49 mL (p<0.0001) in patients treated with salmeterol, and 80 mL (p<0.0001) in those treated with tiotropium. Similar improvement in postbronchodilator FEV(1) was noted in both groups. Furthermore, roflumilast had beneficial effects on other lung function measurements and on selected patient-reported outcomes in both groups. Nausea, diarrhoea, weight loss, and, to a lesser extent, headache were more frequent in patients in the roflumilast groups. These adverse events were associated with increased patient withdrawal. Interpretation Roflumilast improves lung function in patients with COPD treated with salmeterol or tiotropium, and could become an important treatment for these patients

    Genome-wide expression profile of the response to spinal cord injury in <i>Xenopus laevis </i>reveals extensive differences between regenerative and non-regenerative stages

    No full text
    Background: Xenopus laevis has regenerative and non-regenerative stages. As a tadpole, it is fully capable of functional recovery after a spinal cord injury, while its juvenile form (froglet) loses this capability during metamorphosis. We envision that comparative studies between regenerative and non-regenerative stages in Xenopus could aid in understanding why spinal cord regeneration fails in human beings.Results: To identify the mechanisms that allow the tadpole to regenerate and inhibit regeneration in the froglet, we obtained a transcriptome-wide profile of the response to spinal cord injury in Xenopus regenerative and non-regenerative stages. We found extensive transcriptome changes in regenerative tadpoles at 1 day after injury, while this was only observed by 6 days after injury in non-regenerative froglets. In addition, when comparing both stages, we found that they deployed a very different repertoire of transcripts, with more than 80% of them regulated in only one stage, including previously unannotated transcripts. This was supported by gene ontology enrichment analysis and validated by RT-qPCR, which showed that transcripts involved in metabolism, response to stress, cell cycle, development, immune response and inflammation, neurogenesis, and axonal regeneration were regulated differentially between regenerative and non-regenerative stages.Conclusions: We identified differences in the timing of the transcriptional response and in the inventory of regulated transcripts and biological processes activated in response to spinal cord injury when comparing regenerative and non-regenerative stages. These genes and biological processes provide an entry point to understand why regeneration fails in mammals. Furthermore, our results introduce Xenopus laevis as a genetic model organism to study spinal cord regeneration.<p/

    Highly Pathogenic Avian Influenza A(H5N1) Clade 2.3.4.4b Virus in Wild Birds, Chile

    No full text
    In December 2022, highly pathogenic avian influenza A(H5N1) clade 2.3.4.4b virus emerged in Chile. We detected H5N1 virus in 93 samples and obtained 9 whole-genome sequences of strains from wild birds. Phylogenetic analysis suggests multiple viral introductions into South America. Continued surveillance is needed to assess risks to humans and domestic poultry
    corecore