7 research outputs found
Neisseria meningitidis activates pyroptotic pathways in a mouse model of meningitis: role of a two-partner secretion system
There is evidence that in infected cells in vitro the meningococcal HrpA/HrpB two-partner secretion system (TPS) mediates the exit of bacteria from the internalization vacuole and the docking of bacteria to the dynein motor resulting in the induction of pyroptosis. In this study we set out to study the role of the HrpA/HrpB TPS in establishing meningitis and activating pyroptotic pathways in an animal model of meningitis using a reference serogroup C meningococcal strain, 93/4286, and an isogenic hrpB knockout mutant, 93/4286 Omega hrpB. Survival experiments confirmed the role of HrpA/HrpB TPS in the invasive meningococcal disease. In fact, the ability of the hrpB mutant to replicate in brain and spread systemically was impaired in mice infected with hrpB mutant. Furthermore, western blot analysis of brain samples during the infection demonstrated that: i. N. meningitidis activated canonical and non-canonical inflammasome pyroptosis pathways in the mouse brain; ii. the activation of caspase-11, caspase-1, and gasdermin-D was markedly reduced in the hrpB mutant; iii. the increase in the amount of IL-1 beta and IL-18, which are an important end point of pyroptosis, occurs in the brains of mice infected with the wild-type strain 93/4286 and is strongly reduced in those infected with 93/4286 Omega hrpB. In particular, the activation of caspase 11, which is triggered by cytosolic lipopolysaccharide, indicates that during meningococcal infection pyroptosis is induced by intracellular infection after the exit of the bacteria from the internalizing vacuole, a process that is hindered in the hrpB mutant. Overall, these results confirm, in an animal model, that the HrpA/HrpB TPS plays a role in the induction of pyroptosis and suggest a pivotal involvement of pyroptosis in invasive meningococcal disease, paving the way for the use of pyroptosis inhibitors in the adjuvant therapy of the disease
Antimicrobial efficacy of Punica granatum Lythraceae peel extract against pathogens belonging to the ESKAPE group
The improper use and abuse of antibiotics have led to an increase in multidrug-resistant (MDR) bacteria resulting in a failure of standard antibiotic therapies. To date, this phenomenon represents a leading public health threat of the 21st century which requires alternative strategies to fight infections such as the identification of new molecules active against MDR strains. In the last 20 years, natural extracts with biological activities attracted scientific interest. Following the One Health Approach, natural by-products represent a sustainable and promising alternative solution. Consistently, the aim of the present study was to evaluate the antimicrobial activity of hydro-alcoholic pomegranate peel extract (PPE) against MDR microorganisms belonging to Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. “ESKAPE” group pathogens. Through semiquantitative and quantitative methods, the PPE showed effective antimicrobial activity against Gram-positive and Gram-negative MDR bacteria. The kinetics of bactericidal action of PPE highlighted that microbial death was achieved in a time- and dose-dependent manner. High concentrations of PPE exhibited antioxidant activity, providing a protective effect on cellular systems and red blood cell membranes. Finally, we report, for the first time, a significant intracellular antibacterial property of PPE as highlighted by its bactericidal action against the staphylococcal reference strain and its bacteriostatic effect against clinical resistant strain in the HeLa cell line. In conclusion, due to its characterized content of polyphenolic compounds and antioxidant activity strength, the PPE could be considered as a therapeutic agent alone or in conjunction with standard antibiotics against challenging infections caused by ESKAPE pathogens
Eco-Friendly Sanitization of Indoor Environments: Effectiveness of Thyme Essential Oil in Controlling Bioaerosol Levels and Disinfecting Surfaces
Bioaerosols and pathogens in indoor workplaces and residential environments are the primary culprits of several infections. Techniques for sanitizing air and surfaces typically involve the use of UV rays or chemical sanitizers, which may release chemical residues harmful to human health. Essential oils, natural substances derived from plants, which exhibit broad antimicrobial properties, could be a viable alternative for air and surface sanitation. The objective of this study has been to investigate the efficacy of thyme essential oil (TEO) in environmental sanitation processes. In Vitro assays through agar well diffusion, disk volatilization and tube dilution methods revealed significant antimicrobial activity of TEO 100% against foodborne and environmental isolates, with both bacteriostatic/fungistatic and bactericidal/fungicidal effects. Therefore, aqueous solutions of TEO 2.5% and 5% were formulated for air sanitation through nebulization and surface disinfection via direct contact. Bioaerosol samples and surface swabs were analyzed before and after sanitation, demonstrating the efficacy of aqueous solutions of TEO in reducing mesophilic and psychrophilic bacteria and environmental fungi levels in both air and on surfaces. The obtained results prove the antimicrobial potential of aqueous solutions of TEO in improving indoor air quality and surface cleanliness, suggesting thyme essential oil as an effective and safe natural sanitizer with minimal environmental impact compared to dangerous chemical disinfectants
Robot-Assisted Extravesical Ureteral Reimplantation (REVUR) in Pediatric Patients: A New Standard of Treatment for Patients with VUR—A Narrative Review
Robot-assisted extravesical ureteral reimplantation (REVUR) was described for the first time in 2004. Since then, the surgical approach of vesicoureteral reflux (VUR) has changed dramatically. The benefits of this technique are great when compared to the laparoscopic or traditional open approaches. A literature search of PubMed was performed to identify articles covering any aspect of REVUR in the pediatric population. A total of 108 papers published over the period 2004–2024 were collected. Of these, 40 studies were considered valuable in terms of obtaining a complete overview of the REVUR technique. This review aimed to describe the current state of the art of REVUR and define it as the new standard technique for surgical management of selected patients with VUR
Thyme Essential Oil as a Potential Tool Against Common and Re-Emerging Foodborne Pathogens: Biocidal Effect on Bacterial Membrane Permeability
Over the past decade, foodborne diseases have become a significant public health concern, affecting millions of people globally. Major pathogens like Salmonella spp., Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus contaminate food and cause several infections. This study investigates the potential of thyme essential oil (Thy-EO) as a natural antimicrobial agent against most common and re-emerging foodborne bacteria, including S. enterica, Yersinia enterocolitica, and L. monocytogenes. Preliminary tests provided qualitative evidence of Thy-EO’s efficacy by evaluating its antibacterial activity through direct contact and vapor phase exposure. Then, the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) were defined to quantitatively evaluate the bacteriostatic and bactericidal effects of Thy-EO, revealing a strong inhibitory effect against S. enterica, Y. enterocolitica and L. monocytogenes. Additionally, Thy-EO exerted rapid bactericidal kinetics characterized by the disruption of bacterial cell membrane integrity over time. Results highlight Thy-EO’s potential as an alternative antimicrobial agent, demonstrating that treatment with Thy-EO significantly and irreversibly affects the growth of the tested foodborne pathogens
Indocyanine green (ICG) fluorescence technology in pediatric robotic surgery
This study aimed to report our experience in indocyanine green (ICG) fluorescence-guided surgery (FGS) in pediatric robotics. The data of 55 patients (35 boys and 20 girls), who underwent robotic surgery using ICG fluorescence in three institutions over the last 7 years, were retrospectively reviewed. The following robotic procedures were included: pyeloplasty (n = 21), complex Lich–Gregoir ureteral reimplantation (n = 8), varicocelectomy (n = 7), adnexal pathology resection (n = 8), partial nephrectomy (n = 4), nephrectomy (n = 4), renal cyst removal (n = 2), and excision of prostatic utricle (n = 1). The ICG was injected intravenously in all indications except for varicocele where intratesticular injection was done, and prostatic utricle or paraureteral diverticulum where trans-catheter injection was done. The ICG dosage was 0.2–0.3 mg/mL/kg. All the procedures were performed using da Vinci Xi platform. Firefly® allowed to switch form bright light to ICG-NIRF view and vice versa. All the procedures were accomplished in robotics without conversions to laparoscopy or open surgery. No episodes of allergy or anaphylaxis to ICG were recorded. An excellent ICG-NIRF view of target organs was obtained in all procedures. Based on our experience, we believe that application of ICG FGS in pediatric robotics enhances the identification of critical anatomical elements and pathological structures, thereby positively impacting both oncological and functional outcomes. This technique is safe, feasible, and versatile. We advocate the consideration of ICG as the standard of care in certain procedures such as partial nephrectomy, varicocele repair, tumor resection, and ovarian torsion. Nonetheless, further investigations are warranted to explore its potential broader applications in pediatric urology
