234 research outputs found

    On the Progenitors of Core-Collapse Supernovae

    Full text link
    Theory holds that a star born with an initial mass between about 8 and 140 times the mass of the Sun will end its life through the catastrophic gravitational collapse of its iron core to a neutron star or black hole. This core collapse process is thought to usually be accompanied by the ejection of the star's envelope as a supernova. This established theory is now being tested observationally, with over three dozen core-collapse supernovae having had the properties of their progenitor stars directly measured through the examination of high-resolution images taken prior to the explosion. Here I review what has been learned from these studies and briefly examine the potential impact on stellar evolution theory, the existence of "failed supernovae", and our understanding of the core-collapse explosion mechanism.Comment: 7 Pages, invited review accepted for publication by Astrophysics and Space Science (special HEDLA 2010 issue

    FMM-based vortex method for simulation of isotropic turbulence on GPUs, compared with a spectral method

    Full text link
    The Lagrangian vortex method offers an alternative numerical approach for direct numerical simulation of turbulence. The fact that it uses the fast multipole method (FMM)--a hierarchical algorithm for N-body problems with highly scalable parallel implementations--as numerical engine makes it a potentially good candidate for exascale systems. However, there have been few validation studies of Lagrangian vortex simulations and the insufficient comparisons against standard DNS codes has left ample room for skepticism. This paper presents a comparison between a Lagrangian vortex method and a pseudo-spectral method for the simulation of decaying homogeneous isotropic turbulence. This flow field is chosen despite the fact that it is not the most favorable flow problem for particle methods (which shine in wake flows or where vorticity is compact), due to the fact that it is ideal for the quantitative validation of DNS codes. We use a 256^3 grid with Re_lambda=50 and 100 and look at the turbulence statistics, including high-order moments. The focus is on the effect of the various parameters in the vortex method, e.g., order of FMM series expansion, frequency of reinitialization, overlap ratio and time step. The vortex method uses an FMM code (exaFMM) that runs on GPU hardware using CUDA, while the spectral code (hit3d) runs on CPU only. Results indicate that, for this application (and with the current code implementations), the spectral method is an order of magnitude faster than the vortex method when using a single GPU for the FMM and six CPU cores for the FFT

    Initial Conditions for Inflation

    Get PDF
    Free scalar fields in de Sitter space have a one-parameter family of states invariant under the de Sitter group, including the standard thermal vacuum. We show that, except for the thermal vacuum, these states are unphysical when gravitational interactions are included. We apply these observations to the quantum state of the inflaton, and find that, at best, dramatic fine tuning is required for states other than the thermal vacuum to lead to observable features in the CMBR anisotropy.Comment: 31 pages, 4 figure

    Yersinia effectors target mammalian signalling pathways

    Full text link
    Animals have an immune system to fight off challenges from both viruses and bacteria. The first line of defence is innate immunity, which is composed of cells that engulf pathogens as well as cells that release potent signalling molecules to activate an inflammatory response and the adaptive immune system. Pathogenic bacteria have evolved a set of weapons, or effectors, to ensure survival in the host. Yersinia spp. use a type III secretion system to translocate these effector proteins, called Yops, into the host. This report outlines how Yops thwart the signalling machinery of the host immune system.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73466/1/j.1462-5822.2002.00182.x.pd

    Effects of sleep deprivation on neural functioning: an integrative review

    Get PDF
    Sleep deprivation has a broad variety of effects on human performance and neural functioning that manifest themselves at different levels of description. On a macroscopic level, sleep deprivation mainly affects executive functions, especially in novel tasks. Macroscopic and mesoscopic effects of sleep deprivation on brain activity include reduced cortical responsiveness to incoming stimuli, reflecting reduced attention. On a microscopic level, sleep deprivation is associated with increased levels of adenosine, a neuromodulator that has a general inhibitory effect on neural activity. The inhibition of cholinergic nuclei appears particularly relevant, as the associated decrease in cortical acetylcholine seems to cause effects of sleep deprivation on macroscopic brain activity. In general, however, the relationships between the neural effects of sleep deprivation across observation scales are poorly understood and uncovering these relationships should be a primary target in future research
    • 

    corecore