257 research outputs found
Modern trends and risks in the development of resource regions of Russia
This paper, part of a larger project on governance and growth in Russia. It deals with the problems and priorities of the future development of primary producer regions of Russia. We design a regional strategy for socioeconomic development to 2025-2030. The analysis concerns growth and diversification of the economy of regions, where raw materials are abundant, in order to scale back the exploitation of mineral resources and diversify the economy. Almost all strategies involve a gradual change of the vector in the direction of modernization and diversification of the economy. We emphasize that the important role here is for a new regional policy. The paper examines regional financial resilience in Russia in the period following the global financial crisis. The level of risk is rising, as government emergency finance is withdrawn and regions face rising debt to cover even operational expenses, but "resource" regions seem securely well off, despite having been most affected by the financial crisis. This paper examines one region, Khanty-Mansiysk autonomous okrug (KhMAO), the largest "donor" to the federal budget, against the background of other mineral resource abundant regions. It traces developments since the dramatic budget reforms (late 1990s through 2005), including centralization of revenues and rationalized program expenditure (Alexeev and Weber 2013). It assesses regional budget and debt management in response to pressures from increased federal required expenditures, post-crisis withdrawal of subsidies, and the roll-out of new debt guidelines. It describes and explains KhMAO's stability and relative autonomy in these crisis conditions. The key questions are: Why are these "donor" regions, more affected by the crisis than others, also more resilient? Is Russia's growth core of regions financially stable because of federal intervention? How vulnerable is the resource region to future oil price shocks? Our findings are tenative, since there remain questions about transparency and soft budget constraints (Plekhanov 2006). We show federalism at its most cooperative: among other factors, regional collaborative action fosters flexible budgeting. In the longer run, the resilience of resource regions, such as KhMAO, with their overall steady growth, despite volatility in oil prices, arguably is due geopolitical factors, which attract energy producers and industrial giants other than in the oil sector, and the business environemnt, including steady maintenance of a higher standard of living and skills attracted in new clusters, which are supported by innovation-oriented budgets. The findings here, however, also include, even more fundamentally, an evolvinig cooperative federalist agenda, with groups of regions acting together to secure negotiated decisions on tax allocations and spending requirements. Supportive of the conclusion in Chebankova (2008), the term adaptive federalism applies to finance, and compels a rethinking of the concept of fiscal rigidity as applied to the Russian Federation
Definition of the zebrafish genome using flow cytometry and cytogenetic mapping
<p>Abstract</p> <p>Background</p> <p>The zebrafish (<it>Danio rerio</it>) is an important vertebrate model organism system for biomedical research. The syntenic conservation between the zebrafish and human genome allows one to investigate the function of human genes using the zebrafish model. To facilitate analysis of the zebrafish genome, genetic maps have been constructed and sequence annotation of a reference zebrafish genome is ongoing. However, the duplicative nature of teleost genomes, including the zebrafish, complicates accurate assembly and annotation of a representative genome sequence. Cytogenetic approaches provide "anchors" that can be integrated with accumulating genomic data.</p> <p>Results</p> <p>Here, we cytogenetically define the zebrafish genome by first estimating the size of each linkage group (LG) chromosome using flow cytometry, followed by the cytogenetic mapping of 575 bacterial artificial chromosome (BAC) clones onto metaphase chromosomes. Of the 575 BAC clones, 544 clones localized to apparently unique chromosomal locations. 93.8% of these clones were assigned to a specific LG chromosome location using fluorescence <it>in situ </it>hybridization (FISH) and compared to the LG chromosome assignment reported in the zebrafish genome databases. Thirty-one BAC clones localized to multiple chromosomal locations in several different hybridization patterns. From these data, a refined second generation probe panel for each LG chromosome was also constructed.</p> <p>Conclusion</p> <p>The chromosomal mapping of the 575 large-insert DNA clones allows for these clones to be integrated into existing zebrafish mapping data. An accurately annotated zebrafish reference genome serves as a valuable resource for investigating the molecular basis of human diseases using zebrafish mutant models.</p
Innovations, challenges, and minimal information for standardization of humanized mice.
Mice xenotransplanted with human cells and/or expressing human gene products (also known as "humanized mice") recapitulate the human evolutionary specialization and diversity of genotypic and phenotypic traits. These models can provide a relevant in vivo context for understanding of human-specific physiology and pathologies. Humanized mice have advanced toward mainstream preclinical models and are now at the forefront of biomedical research. Here, we considered innovations and challenges regarding the reconstitution of human immunity and human tissues, modeling of human infections and cancer, and the use of humanized mice for testing drugs or regenerative therapy products. As the number of publications exploring different facets of humanized mouse models has steadily increased in past years, it is becoming evident that standardized reporting is needed in the field. Therefore, an international community-driven resource called "Minimal Information for Standardization of Humanized Mice" (MISHUM) has been created for the purpose of enhancing rigor and reproducibility of studies in the field. Within MISHUM, we propose comprehensive guidelines for reporting critical information generated using humanized mice
Autism and Intellectual Disability Are Differentially Related to Sociodemographic Background at Birth
Background: Research findings investigating the sociodemographics of autism spectrum disorder (ASD) have been inconsistent and rarely considered the presence of intellectual disability (ID). Methods: We used population data on Western Australian singletons born from 1984 to 1999 (n = 398,353) to examine the sociodemographic characteristics of children diagnosed with ASD with or without ID, or ID without ASD compared with non-affected children. Results: The profiles for the four categories examined, mild-moderate ID, severe ID, ASD without ID and ASD with ID varied considerably and we often identified a gradient effect where the risk factors for mild-moderate ID and ASD without ID were at opposite extremes while those for ASD with ID were intermediary. This was demonstrated clearly with increased odds of ASD without ID amongst older mothers aged 35 years and over (odds ratio (OR) = 1.69 [CI: 1.18, 2.43]), first born infants (OR = 2.78; [CI: 1.67, 4.54]), male infants (OR = 6.57 [CI: 4.87, 8.87]) and increasing socioeconomic advantage. In contrast, mild-moderate ID was associated with younger mothers aged less than 20 years (OR = 1.88 [CI: 1.57, 2.25]), paternal age greater than 40 years (OR = 1.59 [CI: 1.36, 1.86]), Australian-born and Aboriginal mothers (OR = 1.60 [CI: 1.41, 1.82]), increasing birth order and increasing social disadvantage (OR = 2.56 [CI: 2.27, 2.97]). Mothers of infants residing in regional or remote areas had consistently lower risk of ASD or ID and may be linked to reduced access to services or underascertainment rather than a protective effect of location. Conclusions: The different risk profiles observed between groups may be related to aetiological differences or ascertainment factors or both. Untangling these pathways is challenging but an urgent public health priority in view of the supposed autism epidemic
The Lick AGN Monitoring Project 2016 : dynamical modeling of velocity-resolved Hβ lags in luminous Seyfert galaxies
K.H. acknowledges support from STFC grant ST/R000824/1.We have modeled the velocity-resolved reverberation response of the Hβ broad emission line in nine Seyfert 1 galaxies from the Lick Active Galactic Nucleus (AGN) Monitoring Project 2016 sample, drawing inferences on the geometry and structure of the low-ionization broad-line region (BLR) and the mass of the central supermassive black hole. Overall, we find that the Hβ BLR is generally a thick disk viewed at low to moderate inclination angles. We combine our sample with prior studies and investigate line-profile shape dependence, such as log10(FWHM/σ), on BLR structure and kinematics and search for any BLR luminosity-dependent trends. We find marginal evidence for an anticorrelation between the profile shape of the broad Hβ emission line and the Eddington ratio, when using the rms spectrum. However, we do not find any luminosity-dependent trends, and conclude that AGNs have diverse BLR structure and kinematics, consistent with the hypothesis of transient AGN/BLR conditions rather than systematic trends.Publisher PDFPeer reviewe
The Lick AGN Monitoring Project 2016: Dynamical Modeling of Velocity-Resolved H\b{eta} Lags in Luminous Seyfert Galaxies
We have modeled the velocity-resolved reverberation response of the H\b{eta}
broad emission line in nine Seyfert 1 galaxies from the Lick Active Galactic
Nucleus (AGN) Monitioring Project 2016 sample, drawing inferences on the
geometry and structure of the low-ionization broad-line region (BLR) and the
mass of the central supermassive black hole. Overall, we find that the H\b{eta}
BLR is generally a thick disk viewed at low to moderate inclination angles. We
combine our sample with prior studies and investigate line-profile shape
dependence, such as log10(FWHM/{\sigma}), on BLR structure and kinematics and
search for any BLR luminosity-dependent trends. We find marginal evidence for
an anticorrelation between the profile shape of the broad H\b{eta} emission
line and the Eddington ratio, when using the root-mean-square spectrum.
However, we do not find any luminosity-dependent trends, and conclude that AGNs
have diverse BLR structure and kinematics, consistent with the hypothesis of
transient AGN/BLR conditions rather than systematic trends
The Lick AGN Monitoring Project 2016 : velocity-resolved Hβ lags in luminous Seyfert galaxies
Funding: K.H. acknowledges support from STFC grant ST/R000824/1.We carried out spectroscopic monitoring of 21 low-redshift Seyfert 1 galaxies using the Kast double spectrograph on the 3 m Shane telescope at Lick Observatory from April 2016 to May 2017. Targetingactive galactic nuclei (AGN) with luminosities of λLλ(5100 Å) ≈ 1044 erg s−1 and predicted Hβ lags of∼ 20–30 days or black hole masses of 107–108.5 M⊙, our campaign probes luminosity-dependent trends in broad-line region (BLR) structure and dynamics as well as to improve calibrations for single-epoch estimates of quasar black hole masses. Here we present the first results from the campaign, including Hβ emission-line light curves, integrated Hβ lag times (8–30 days) measured against V -band continuum light curves, velocity-resolved reverberation lags, line widths of the broad Hβ components, and virial black hole mass estimates (107.1–108.1 M⊙). Our results add significantly to the number of existing velocity-resolved lag measurements and reveal a diversity of BLR gas kinematics at moderately high AGN luminosities. AGN continuum luminosity appears not to be correlated with the type of kinematics that its BLR gas may exhibit. Follow-up direct modeling of this dataset will elucidate the detailed kinematics and provide robust dynamical black hole masses for several objects in this sample.Publisher PDFPeer reviewe
Role of genetic testing for inherited prostate cancer risk: Philadelphia prostate cancer consensus conference 2017
Purpose: Guidelines are limited for genetic testing for prostate cancer (PCA). The goal of this conference was to develop an expert consensus-dri
Genome-wide analyses of individual differences in quantitatively assessed reading- and language-related skills in up to 34,000 people
The use of spoken and written language is a fundamental human capacity. Individual differences in reading- and language-related skills are influenced by genetic variation, with twin-based heritability estimates of 30 to 80% depending on the trait. The genetic architecture is complex, heterogeneous, and multifactorial, but investigations of contributions of single-nucleotide polymorphisms (SNPs) were thus far underpowered. We present a multicohort genome-wide association study (GWAS) of five traits assessed individually using psychometric measures (word reading, nonword reading, spelling, phoneme awareness, and nonword repetition) in samples of 13,633 to 33,959 participants aged 5 to 26 y. We identified genome-wide significant association with word reading (rs11208009, P = 1.098 x 10(-8)) at a locus that has not been associated with intelligence or educational attainment. All five reading-/language-related traits showed robust SNP heritability, accounting for 13 to 26% of trait variability. Genomic structural equation modeling revealed a shared genetic factor explaining most of the variation in word/nonword reading, spelling, and phoneme awareness, which only partially overlapped with genetic variation contributing to nonword repetition, intelligence, and educational attainment. A multivariate GWAS of word/nonword reading, spelling, and phoneme awareness maximized power for follow-up investigation. Genetic correlation analysis with neuroimaging traits identified an association with the surface area of the banks of the left superior temporal sulcus, a brain region linked to the processing of spoken and written language. Heritability was enriched for genomic elements regulating gene expression in the fetal brain and in chromosomal regions that are depleted of Neanderthal variants. Together, these results provide avenues for deciphering the biological underpinnings of uniquely human traits.Peer reviewe
- …