6 research outputs found

    A fibroblast growth factor 21-pregnane X receptor pathway downregulates hepatic CYP3A4 in nonalcoholic fatty liver disease

    No full text
    Nonalcoholic fatty liver disease (NAFLD) alters drug response. We previously reported that NAFLD is associated with reduced in vivo CYP3A drug-metabolism activity and hepatic CYP3A4 expression in humans as well as mouse and human hepatoma models of the disease. Here, we investigated the role of the lipidand glucose-modulating hormone fibroblast growth factor 21 (FGF21) in the molecular mechanism regulating CYP3A4 expression in NAFLD. In human subjects, mouse and cellular NAFLD models with lower CYP3A4 expression, circulating FGF21, or hepatic FGF21 mRNA levels were elevated. Administration of recombinant FGF21 or transient hepatic overexpression of FGF21 resulted in reduced liver CYP3A4 luciferase reporter activity in mice and decreased CYP3A4 mRNA expression and activity in cultured Huh7 hepatoma cells. Blocking canonical FGF21 signaling by pharmacological inhibition of MEK1 kinase in Huh7 cells caused de-repression of CYP3A4 mRNA expression with FGF21 treatment. Mice with high-fat diet-induced simple hepatic steatosis and lipid-loaded Huh7 cells had reduced nuclear localization of the pregnane X receptor (PXR), a key transcriptional regulator of CYP3A4. Furthermore, decreased nuclear PXR was observed in mouse liver and Huh7 cells after FGF21 treatment or FGF21 overexpression. Decreased PXR binding to the CYP3A4 proximal promoter was found in FGF21-treated Huh7 cells. An FGF21-PXR signaling pathway may be involved in decreased hepatic CYP3A4 metabolic activity in NAFLD

    Dendritic Cell Differentiation Induced by a Self-Peptide Derived from Apolipoprotein E

    No full text
    Dendritic cells (DCs) are professional APCs and potent stimulators of naive T cells. Since DCs have the ability to immunize or tolerize T cells they are unique candidates for use in immunotherapy. Our laboratory has discovered that a naturally processed self-peptide from apolipoprotein E, Ep1.B, induces DC-like morphology and surface marker expression in a murine monocytic cell line (PU5-1.8), human monocytic cell line (U937), murine splenocytes, and human peripheral blood monocytes. Microscopy and flow cytometric analysis revealed that Ep1.B-treated cells display decreased adherence to plastic and increased aggregation, dendritic processes, and expression of DC surface markers, including DEC-205, CD11c, B7.1, and B7.2. These effects were observed in both PU5-1.8 cells and splenocytes from various mouse strains including BALB/c, C57BL/6, NOD/Lt, and C3H/HeJ. Coadministration of Ep1.B with OVA antigenic peptide functions in dampening specific immune response to OVA. Ep1.B down-regulates proliferation of T cells and IFN-gamma production and stimulates IL-10 secretion in immunized mice. Ep1.B-induced differentiation resulted in the activation of PI3K and MAPK signaling pathways, including ERK1/2, p38, and JNK. We also found that NF-kappaB, a transcription factor essential for DC differentiation, is critical in mediating the effects of Ep1.B. Ep1.B-induced differentiation is independent of MyD88-dependent pathway of TLR signaling. Cumulatively, these findings suggest that Ep1.B acts by initiating a signal transduction cascade in monocytes leading to their differentiation into DCs

    Hepatic organic anion transporting polypeptide transporter and thyroid hormone receptor interplay determines cholesterol and glucose homeostasis

    No full text
    The role of organic anion transporting polypeptides (OATPs), particularly the members of OATP1B subfamily, in hepatocellular handling of endogenous and exogenous compounds is an important and emerging area of research. Using a mouse model lacking Slco1b2, the murine ortholog of the OATP1B subfamily, we have demonstrated previously that genetic ablation causes reduced hepatic clearance capacity for substrates. In this study, we focused on the physiological function of the hepatic OATP1B transporters. First, we studied the influence of the Oatp1b2 deletion on bile acid (BA) metabolism, showing that lack of the transporter results in a significantly reduced expression of Cyp7a1, the key enzyme of BA synthesis, resulting in elevated cholesterol levels after high dietary fat challenge. Furthermore, Slco1b2-/- mice exhibited delayed clearance after oral glucose challenge resulting from reduced hepatic glucose uptake. In addition to increased hepatic glycogen content, Slco1b2-/- mice exhibited reduced glucose output after pyruvate challenge. This is in accordance with reduced hepatic expression of phosphoenolpyruvate carboxykinase (PEPCK) in knockout mice. We show that this phenotype is due to the loss of liver-specific Oatp1b2-mediated hepatocellular thyroid hormone entry, which then leads to reduced transcriptional activation of target genes of hepatic thyroid hormone receptor (TR), including Cyp7a1 and Pepck but also Dio1 and Glut2. Importantly, we assessed human relevance using a cohort of archived human livers in which OATP1B1 expression was noted to be highly associated with TR target genes, especially for glucose facilitating transporter 2 (GLUT2). Furthermore, GLUT2 expression was significantly decreased in livers harboring a common genetic polymorphism in SLCO1B1. Conclusion: Our findings reveal that OATP1B-mediated hepatic thyroid hormone entry is a key determinant of cholesterol and glucose homeostasis. © 2011 American Association for the Study of Liver Diseases
    corecore