245 research outputs found

    Tissue biochemical diversity of 20 gooseberry cultivars and the effect of ethylene supplementation on postharvest life

    Get PDF
    The European gooseberry (Ribes uva-crispa) is still an understudied crop with limited data available on its biochemical profile and postharvest life. A variety of polyphenols were detected in the skin and flesh of 20 gooseberry cvs, representing mainly flavonol glycosides, anthocyanins and flavan-3-ols. In contrast, gooseberry seeds were for the first time characterised by the presence of considerable amounts of hydroxycinnamic acid glycosides tentatively identified by UPLC-QToF/MS. All cvs examined represented a good source of vitamin C while being low in sugar. Furthermore, the postharvest stability of bioactives was explored by supplementation of exogenous ethylene in air at 5 °C. Results suggest a low sensitivity of gooseberries to ethylene. The overall quality of gooseberries remained stable over two weeks, showing potential for extended bioactive life

    System architecture and enterprise architecture : a juxta position?

    Get PDF
    A systems approach to creating a system is discussed. The system engineering process, and specifically the system architecture process, is formulated and applied to a typical (physical) system, enterprise, and project. These lead to the concepts of system architecture (SA), enterprise architecture (EA), and project architecture (PA) respectively. Similarities and inter-relationships among these architectures and related methodologies are investigated, seeking better interaction among them. ‘Work’ is proposed as an important conceptual building-block of these architectures, properly defined as activity with associated inputs, outputs, governances, and mechanisms. Techniques such as functional analysis, process modelling, and task analysis are used to demonstrate the inter-relationships among these apparently unrelated organisational perspectives of product, process, and project.’n Stelselbenadering tot die daarstelling van ’n stelsel word bespreek. Die stelselingenieurswese,en spesifiek die stelselargitektuurproses, word geformuleer en toegepas op ’n tipiese (fisiese) stelsel, onderneming, en projek. Dit lei tot die konsepte van stelselargitektuur (SA), ondernemingsargitektuur (OA), en projekargitektuur (PA). Ooreenkomste en verwantskappe tussen hierdie argitekture word ontleed om beter onderlinge interaksie te bewerkstellig. ’n Belangrike konseptuele bousteen van hierdie argitekture word voorgestel as ‘werk’, behoorlik gedefinieer as aktiwiteit met gepaardgaande insette, uitsette, kontroles, en meganismes. Tegnieke soos funksionele analise, prosesmodellering, en taakanalise word gebruik om die onderlinge verbande tussen hierdie skynbaar onverwante organisatoriese perspektiewe van produk, projek, en proses, te demonstreer.http://www.journals.co.za/ej/ejour_indeng.htmlai201

    ``X-Ray Edge'' Singularities in Nanotubes and Quantum Wires with Multiple Subbands

    Full text link
    Band theory predicts an inverse square root van Hove singularity in the tunneling density of states at the minimum energy of an unoccupied subband in a one-dimensional quantum wire. With interactions, an orthogonality catastrophe analogous to the x-ray edge effect for core levels in a metal strongly reduces this singularity by a power B of the energy above threshold, with B approximately 0.3 for typical carbon nanotubes. Despite the anomalous tunneling characteristic, good quasiparticles corresponding to the unoccupied subband states do exist.Comment: 4 page

    Technology diffusion and forecasting : the case of computational fluid dynamics (CFD) for simulation of greenhouse internal environments

    Get PDF
    Forecasting emerging technologies as well as rate of diffusion of resultant products are complex in the context of management of technology usually because of a lack of relevant data. Techniques such as bibliometric analysis and the Bass diffusion model are utilized in this paper to assess the growth rate and market penetration of Computational Fluid Dynamics (CFD) as a technology. The penetration and growth rate of user acceptance to two CFD codes (not identified) are simulated. Furthermore a technology forecasting model of research and innovation in the field of application of CFD in the assessment of greenhouses is presented. Some CFD results of simulations for internal and external flow in an eight span greenhouse are presented as illustration of the power of CFD as technology.http://www.worldscinet.com/ijitm/ai201

    A system dynamics approach to technology interaction : from asymptotic to cyclic behaviour

    Get PDF
    This paper is an extension and elaboration of previous research on the simulation of three competing technologies that interact. A modified version of the three-technology system is investigated, and some initial system dynamics results are reported illustrating the progression from asymptotic to cyclic behaviour. Technology is considered in this research as a result of innovation, a rate-dependent process that may include several non-linearities due to interaction with the environment and social context. Using bibliometrics as a research data source is an interesting way to trace technology growth patterns very effectively. In this research, the existence of cyclic behaviour in two real life technologies is illustrated using bibliometrics. In this paper, a technology systemconsisting of three interacting technologies is treated andmodelled in a coupled manner where the interacting dynamics is described by the Lotka–Volterra system of differential equations. The effect of interaction between the technologies and the period of cyclic behaviour is illustrated parametrically. Furthermore, the possible uncertain diffusion as well as interaction effect for two of the technologies is also addressed in this research using a Monte Carlo multivariate simulation technique and a system dynamics approach. The research method is exploratory and case based.University of Pretoria, the University of Johannesburg and the National Research Foundation (NRF) in South Africa.http://www.journals.elsevier.com/technological-forecasting-and-social-change2016-08-31hb201

    Variation of theanine, phenolic, and methylxanthine compounds in 21 cultivars of Camellia sinensis harvested in different seasons

    Get PDF
    This is the first study to use chemometric methods to differentiate among 21 cultivars of Camellia sinensis from China and between leaves harvested at different times of the year using 30 compounds implicated in the taste and quality of tea. Unique patterns of catechin derivatives were observed among cultivars and across harvest seasons. C. sinensis var. pubilimba (You 510) differed from the cultivars of C. sinensis var. sinensis, with higher levels of theobromine, (+)-catechin, gallocatechin, gallocatechin gallate and theasinensin B, and lower levels of (−)-epicatechin, (−)-epigallocatechin (EGC) and (-)-epigallocatechin gallate (EGCG), respectively. Three cultivars of C. sinensis var. sinensis, Fuyun 7, Qiancha 7 and Zijuan contained significantly more caffeoylquinic acids than others cultivars. A Linear Discriminant Analysis model based on the abundance of 12 compounds was able to discriminate amongst all 21 tea cultivars. Harvest time impacted the abundance of EGC, theanine and afzelechin gallate

    The rationale for heart team decision-making for patients with stable, complex coronary artery disease

    Get PDF
    Stable complex coronary artery disease can be treated with coronary artery bypass grafting (CABG), percutaneous coronary intervention (PCI), or medical therapy. Multidisciplinary decision-making has gained more emphasis over the recent years to select the most optimal treatment strategy for individual patients with stable complex coronary artery disease. However, the so-called 'Heart Team' concept has not been widely implemented. Yet, decision-making has shown to remain suboptimal; there is large variability in PCI-to-CABG ratios, which may predominantly be the consequence of physician-related factors that have raised concerns regarding overuse, underuse, and inappropriate selection of revascularization. In this review, we summarize these and additional data to support the statement that a multidisciplinary Heart Team consisting of at least a clinical/non-invasive cardiologist, interventional cardiologist, and cardiac surgeon, can together better analyse and interpret the available diagnostic evidence, put into context the clinical condition of the patient as well as consider individual preference and local expertise, and through shared decision-making with the patient can arrive at a most optimal joint treatment strategy recommendation for patients with stable co

    A Weyl-Dirac Cosmological Model with DM and DE

    Full text link
    In the Weyl-Dirac (W-D) framework a spatially closed cosmological model is considered. It is assumed that the space-time of the universe has a chaotic Weylian microstructure but is described on a large scale by Riemannian geometry. Locally fields of the Weyl connection vector act as creators of massive bosons having spin 1. It is suggested that these bosons, called weylons, provide most of the dark matter in the universe. At the beginning the universe is a spherically symmetric geometric entity without matter. Primary matter is created by Dirac's gauge function very close to the beginning. In the early epoch, when the temperature of the universe achieves its maximum, chaotically oriented Weyl vector fields being localized in micro-cells create weylons. In the dust dominated period Dirac's gauge function is giving rise to dark energy, the latter causing the cosmic acceleration at present. This oscillatory universe has an initial radius identical to the Plank length = 1.616 exp (-33) cm, at present the cosmic scale factor is 3.21 exp (28) cm, while its maximum value is 8.54 exp (28) cm. All forms of matter are created by geometrically based functions of the W-D theory.Comment: 25 pages. Submitted to GR

    Variable Modified Chaplygin Gas in Anisotropic Universe with Kaluza-Klein Metric

    Full text link
    In this work, we have consider Kaluza-Klein Cosmology for anisotropic universe where the universe is filled with variable modified chaplygin gas (VMCG). Here we find normal scalar field Ï•\phi and the self interacting potential V(Ï•)V(\phi) to describe the VMCG Cosmology. Also we graphically analyzed the geometrical parameters named {\it statefinder parameters} in anisotropic Kaluza-Klein model. Next, we consider a Kaluza-Klein model of interacting VMCG with dark matter in the Einstein gravity framework. Here we construct the three dimensional autonomous dynamical system of equations for this interacting model with the assumption that the dark energy and the dark matter are interact between them and for that we also choose the interaction term. We convert that interaction terms to its dimensionless form and perform stability analysis and solve them numerically. We obtain a stable scaling solution of the equations in Kaluza-Klein model and graphically represent solutions.Comment: 11 pages, 13 figure
    • …
    corecore