49 research outputs found

    Scaling Sparse Matrices for Optimization Algorithms

    Get PDF
    To iteratively solve large scale optimization problems in various contexts like planning, operations, design etc., we need to generate descent directions that are based on linear system solutions. Irrespective of the optimization algorithm or the solution method employed for the linear systems, ill conditioning introduced by problem characteristics or the algorithm or both need to be addressed. In [GL01] we used an intuitive heuristic approach in scaling linear systems that improved performance of a large scale interior point algorithm significantly. We saw a factor of 10*3* improvements in condition number estimates. In this paper, given our experience with optimization problems from a variety of application backgrounds like economics, finance, engineering, planning etc., we examine the theoretical basis for scaling while solving the linear systems. Our goal is to develop reasonably "good" scaling schemes with sound theoretical basis. We introduce concepts and define "good" scaling schemes in section (1), as well as explain related work in this area. Scaling has been studied extensively and though there is a broad agreement on its importance, the same cannot be said about what constitutes good scaling. A theoretical framework to scale an m x n real matrix is established in section (2). We use the first order conditions associated with the Euclidean metric to develop iterative schemes in section (2.3) that approximate solution in O(mn) time for real matrice. We discuss symmetry preserving scale factors for an n x n symmetric matrix in (3). The importance of symmetry preservation is discussed in section (3.1). An algorithm to directly compute symmetry preserving scale factors in O(n2) time based on Euclidean metric is presented in section (3.4) We also suggest scaling schemes based on rectilinear norm in section (2.4). Though all p-norms are theoretically equivalent, the importance of outliers increases as p increases. For barrier methods, due to large diagnal corrections, we believe that the taxicab metric (p = 1) may be more appropriate. We develop a linear programming model for it and look at a "reduced" dual that can be formulated as a minimum cost flow problem on networks. We are investigating algorithms to solve it in O(mn) time that we require for an efficient scaling procedure. We hope that in future special structure of the "reduced" dual could be exploited to solve it quickly. The dual information can then be used to compute the required scale factors. We discuss Manhattan metric for symmetric matrices in section (3.5) and as in the case of real matrices, we are unable to propose an efficient computational scheme for this metric. We look at a linearized ideal penalty function that only uses deviations out of the desired range in section (2.5). If we could use such a metric to generate an efficient solution, then we would like to see impact of changing the range on the numerical behavior.

    Scaling Sparse Constrained Nonlinear Problems for Iterative Solvers

    Get PDF
    We look at scaling a nonlinear optimization problem for iterative solvers that use at least first derivatives. These derivatives are either computed analytically or by differncing. We ignore iterative methods that are based on function evaluations only and that do not use any derivative information. We also exclude methods where the full problem structure is unknown like variants of delayed column generation. We look at related work in section (1). Despite its importance as evidenced in widely used implementations of nonlinear programming algorithms, scaling has not received enough attention from a theoretical point of view. What do we mean by scaling a nonlinear problem itself is not very clear. In this paper we attempt a scaling framework definition. We start with a description of a nonlinear problem in section (2). Various authors prefer different forms, but all forms can be converted to the form we show. We then describe our scaling framework in section (3). We show the equivalence between the original problem and the scaled problem. The correctness results of section (3.3) play an important role in the dynamic scaling scheme suggested. In section (4), we develop a prototypical algorithm that can be used to represent a variety of iterative solution methods. Using this we examine the impact of scaling in section (5). In the last section (6), we look at what the goal should be for an ideal scaling scheme and make some implementation suggestions for nonlinear solvers.

    Optimization theory for large systems

    No full text

    Modeling and optimizing with gino

    No full text
    +193hlm.;28c
    corecore