129 research outputs found
Affective Man-Machine Interface: Unveiling human emotions through biosignals
As is known for centuries, humans exhibit an electrical profile. This profile is altered through various psychological and physiological processes, which can be measured through biosignals; e.g., electromyography (EMG) and electrodermal activity (EDA). These biosignals can reveal our emotions and, as such, can serve as an advanced man-machine interface (MMI) for empathic consumer products. However, such a MMI requires the correct classification of biosignals to emotion classes. This chapter starts with an introduction on biosignals for emotion detection. Next, a state-of-the-art review is presented on automatic emotion classification. Moreover, guidelines are presented for affective MMI. Subsequently, a research is presented that explores the use of EDA and three facial EMG signals to determine neutral, positive, negative, and mixed emotions, using recordings of 21 people. A range of techniques is tested, which resulted in a generic framework for automated emotion classification with up to 61.31% correct classification of the four emotion classes, without the need of personal profiles. Among various other directives for future research, the results emphasize the need for parallel processing of multiple biosignals
Effective theory of the Delta(1232) in Compton scattering off the nucleon
We formulate a new power-counting scheme for a chiral effective field theory
of nucleons, pions, and Deltas. This extends chiral perturbation theory into
the Delta-resonance region. We calculate nucleon Compton scattering up to
next-to-leading order in this theory. The resultant description of existing
p cross section data is very good for photon energies up to about 300
MeV. We also find reasonable numbers for the spin-independent polarizabilities
and .Comment: 29 pp, 9 figs. Minor revisions. To be published in PR
Hubble expansion and structure formation in the "running FLRW model" of the cosmic evolution
A new class of FLRW cosmological models with time-evolving fundamental
parameters should emerge naturally from a description of the expansion of the
universe based on the first principles of quantum field theory and string
theory. Within this general paradigm, one expects that both the gravitational
Newton's coupling, G, and the cosmological term, Lambda, should not be strictly
constant but appear rather as smooth functions of the Hubble rate. This
scenario ("running FLRW model") predicts, in a natural way, the existence of
dynamical dark energy without invoking the participation of extraneous scalar
fields. In this paper, we perform a detailed study of these models in the light
of the latest cosmological data, which serves to illustrate the
phenomenological viability of the new dark energy paradigm as a serious
alternative to the traditional scalar field approaches. By performing a joint
likelihood analysis of the recent SNIa data, the CMB shift parameter, and the
BAOs traced by the Sloan Digital Sky Survey, we put tight constraints on the
main cosmological parameters. Furthermore, we derive the theoretically
predicted dark-matter halo mass function and the corresponding redshift
distribution of cluster-size halos for the "running" models studied. Despite
the fact that these models closely reproduce the standard LCDM Hubble
expansion, their normalization of the perturbation's power-spectrum varies,
imposing, in many cases, a significantly different cluster-size halo redshift
distribution. This fact indicates that it should be relatively easy to
distinguish between the "running" models and the LCDM cosmology using realistic
future X-ray and Sunyaev-Zeldovich cluster surveys.Comment: Version published in JCAP 08 (2011) 007: 1+41 pages, 6 Figures, 1
Table. Typos corrected. Extended discussion on the computation of the
linearly extrapolated density threshold above which structures collapse in
time-varying vacuum models. One appendix, a few references and one figure
adde
Predictive powers of chiral perturbation theory in Compton scattering off protons
We study low-energy nucleon Compton scattering in the framework of baryon
chiral perturbation theory (BPT) with pion, nucleon, and (1232)
degrees of freedom, up to and including the next-to-next-to-leading order
(NNLO). We include the effects of order , and , with
MeV the -resonance excitation energy. These are
all "predictive" powers in the sense that no unknown low-energy constants enter
until at least one order higher (i.e, ). Estimating the theoretical
uncertainty on the basis of natural size for effects, we find that
uncertainty of such a NNLO result is comparable to the uncertainty of the
present experimental data for low-energy Compton scattering. We find an
excellent agreement with the experimental cross section data up to at least the
pion-production threshold. Nevertheless, for the proton's magnetic
polarizability we obtain a value of fm, in
significant disagreement with the current PDG value. Unlike the previous
PT studies of Compton scattering, we perform the calculations in a
manifestly Lorentz-covariant fashion, refraining from the heavy-baryon (HB)
expansion. The difference between the lowest order HBPT and BPT
results for polarizabilities is found to be appreciable. We discuss the chiral
behavior of proton polarizabilities in both HBPT and BPT with the
hope to confront it with lattice QCD calculations in a near future. In studying
some of the polarized observables, we identify the regime where their naive
low-energy expansion begins to break down, thus addressing the forthcoming
precision measurements at the HIGS facility.Comment: 24 pages, 9 figures, RevTeX4, revised version published in EPJ
Observational constraints on Horava-Lifshitz cosmology
We use observational data from Type Ia Supernovae (SNIa), Baryon Acoustic
Oscillations (BAO), and Cosmic Microwave Background (CMB), along with
requirements of Big Bang Nucleosynthesis (BBN), to constrain the cosmological
scenarios governed by Horava-Lifshitz gravity. We consider both the detailed
and non-detailed balance versions of the gravitational sector, and we include
the matter and radiation sectors. We conclude that the detailed-balance
scenario cannot be ruled out from the observational point of view, however the
corresponding likelihood contours impose tight constraints on the involved
parameters. The scenario beyond detailed balance is compatible with
observational data, and we present the corresponding stringent constraints and
contour-plots of the parameters. Although this analysis indicates that
Horava-Lifshitz cosmology can be compatible with observations, it does not
enlighten the discussion about its possible conceptual and theoretical
problems.Comment: 11 pages, 6 figures, version published in JCA
Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus
A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk
Variation in Structure and Process of Care in Traumatic Brain Injury: Provider Profiles of European Neurotrauma Centers Participating in the CENTER-TBI Study.
INTRODUCTION: The strength of evidence underpinning care and treatment recommendations in traumatic brain injury (TBI) is low. Comparative effectiveness research (CER) has been proposed as a framework to provide evidence for optimal care for TBI patients. The first step in CER is to map the existing variation. The aim of current study is to quantify variation in general structural and process characteristics among centers participating in the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. METHODS: We designed a set of 11 provider profiling questionnaires with 321 questions about various aspects of TBI care, chosen based on literature and expert opinion. After pilot testing, questionnaires were disseminated to 71 centers from 20 countries participating in the CENTER-TBI study. Reliability of questionnaires was estimated by calculating a concordance rate among 5% duplicate questions. RESULTS: All 71 centers completed the questionnaires. Median concordance rate among duplicate questions was 0.85. The majority of centers were academic hospitals (n = 65, 92%), designated as a level I trauma center (n = 48, 68%) and situated in an urban location (n = 70, 99%). The availability of facilities for neuro-trauma care varied across centers; e.g. 40 (57%) had a dedicated neuro-intensive care unit (ICU), 36 (51%) had an in-hospital rehabilitation unit and the organization of the ICU was closed in 64% (n = 45) of the centers. In addition, we found wide variation in processes of care, such as the ICU admission policy and intracranial pressure monitoring policy among centers. CONCLUSION: Even among high-volume, specialized neurotrauma centers there is substantial variation in structures and processes of TBI care. This variation provides an opportunity to study effectiveness of specific aspects of TBI care and to identify best practices with CER approaches
Vascular Remodeling in Health and Disease
The term vascular remodeling is commonly used to define the structural changes in blood vessel geometry that occur in response to long-term physiologic alterations in blood flow or in response to vessel wall injury brought about by trauma or underlying cardiovascular diseases.1, 2, 3, 4 The process of remodeling, which begins as an adaptive response to long-term hemodynamic alterations such as elevated shear stress or increased intravascular pressure, may eventually become maladaptive, leading to impaired vascular function. The vascular endothelium, owing to its location lining the lumen of blood vessels, plays a pivotal role in regulation of all aspects of vascular function and homeostasis.5 Thus, not surprisingly, endothelial dysfunction has been recognized as the harbinger of all major cardiovascular diseases such as hypertension, atherosclerosis, and diabetes.6, 7, 8 The endothelium elaborates a variety of substances that influence vascular tone and protect the vessel wall against inflammatory cell adhesion, thrombus formation, and vascular cell proliferation.8, 9, 10 Among the primary biologic mediators emanating from the endothelium is nitric oxide (NO) and the arachidonic acid metabolite prostacyclin [prostaglandin I2 (PGI2)], which exert powerful vasodilatory, antiadhesive, and antiproliferative effects in the vessel wall
Analysis of shared heritability in common disorders of the brain
Paroxysmal Cerebral Disorder
- …