2,620 research outputs found
A Dynamic Programming Solution to Bounded Dejittering Problems
We propose a dynamic programming solution to image dejittering problems with
bounded displacements and obtain efficient algorithms for the removal of line
jitter, line pixel jitter, and pixel jitter.Comment: The final publication is available at link.springer.co
First NACO observations of the Brown Dwarf LHS 2397aB
Observations of the standard late type M8 star LHS 2397aA were obtained at
the ESO-VLT 8m telescope ``Yepun'' using the NAOS/CONICA Adaptive Optics
facility. The observations were taken during the NACO commissioning, and the
infrared standard star LHS 2397aA was observed in the H, and Ks broad band
filters. In both bands the brown dwarf companion LHS2397aB was detected. Using
a program recently developed (Bouy et al., 2003) for the detection of stellar
binaries we calculated the principal astrometric parameters (angular binary
separation and position angle P.A.) and the photometry of LHS 2397aA and LHS
2397aB. Our study largely confirms previous results obtained with the
AO-Hokupa'a facility at Gemini-North (Freed et al., 2003); however a few
discrepancies are observed.Comment: 5 page
Node Labels in Local Decision
The role of unique node identifiers in network computing is well understood
as far as symmetry breaking is concerned. However, the unique identifiers also
leak information about the computing environment - in particular, they provide
some nodes with information related to the size of the network. It was recently
proved that in the context of local decision, there are some decision problems
such that (1) they cannot be solved without unique identifiers, and (2) unique
node identifiers leak a sufficient amount of information such that the problem
becomes solvable (PODC 2013).
In this work we give study what is the minimal amount of information that we
need to leak from the environment to the nodes in order to solve local decision
problems. Our key results are related to scalar oracles that, for any given
, provide a multiset of labels; then the adversary assigns the
labels to the nodes in the network. This is a direct generalisation of the
usual assumption of unique node identifiers. We give a complete
characterisation of the weakest oracle that leaks at least as much information
as the unique identifiers.
Our main result is the following dichotomy: we classify scalar oracles as
large and small, depending on their asymptotic behaviour, and show that (1) any
large oracle is at least as powerful as the unique identifiers in the context
of local decision problems, while (2) for any small oracle there are local
decision problems that still benefit from unique identifiers.Comment: Conference version to appear in the proceedings of SIROCCO 201
Automatic detection of arcs and arclets formed by gravitational lensing
We present an algorithm developed particularly to detect gravitationally
lensed arcs in clusters of galaxies. This algorithm is suited for automated
surveys as well as individual arc detections. New methods are used for image
smoothing and source detection. The smoothing is performed by so-called
anisotropic diffusion, which maintains the shape of the arcs and does not
disperse them. The algorithm is much more efficient in detecting arcs than
other source finding algorithms and the detection by eye.Comment: A&A in press, 12 pages, 16 figure
Tackling 3D ToF Artifacts Through Learning and the FLAT Dataset
Scene motion, multiple reflections, and sensor noise introduce artifacts in
the depth reconstruction performed by time-of-flight cameras. We propose a
two-stage, deep-learning approach to address all of these sources of artifacts
simultaneously. We also introduce FLAT, a synthetic dataset of 2000 ToF
measurements that capture all of these nonidealities, and allows to simulate
different camera hardware. Using the Kinect 2 camera as a baseline, we show
improved reconstruction errors over state-of-the-art methods, on both simulated
and real data.Comment: ECCV 201
Near-Optimal Distributed Maximum Flow
We present a near-optimal distributed algorithm for -approximation of single-commodity maximum flow in undirected weighted networks that runs in communication rounds in the \Congest model. Here, and denote the number of nodes and the network diameter, respectively. This is the first improvement over the trivial bound of , and it nearly matches the round complexity lower bound. The development of the algorithm contains two results of independent interest: (i) A -round distributed construction of a spanning tree of average stretch . (ii) A -round distributed construction of an -congestion approximator consisting of the cuts induced by virtual trees. The distributed representation of the cut approximator allows for evaluation in rounds. All our algorithms make use of randomization and succeed with high probability
One More Awareness Gap? The BehaviourâImpact Gap Problem
Preceding research has made hardly any attempt to measure the ecological impacts of pro-environmental behaviour in an objective way. Those impacts were rather supposed or calculated. The research described herein scrutinized the ecological impact reductions achieved through pro-environmental behaviour and raised the question how much of a reduction in carbon footprint can be achieved through voluntary action without actually affecting the socio-economic determinants of life. A survey was carried out in order to measure the difference between the ecological footprint of âgreenâ and âbrownâ consumers. No significant difference was found between the ecological footprints of the two groupsâsuggesting that individual pro-environmental attitudes and behaviour do not always reduce the environmental impacts of consumption. This finding resulted in the formulation of a new proposition called the BIG (behaviourâimpact gap) problem, which is an interesting addition to research in the field of environmental awareness gaps
Fast Distributed Approximation for Max-Cut
Finding a maximum cut is a fundamental task in many computational settings.
Surprisingly, it has been insufficiently studied in the classic distributed
settings, where vertices communicate by synchronously sending messages to their
neighbors according to the underlying graph, known as the or
models. We amend this by obtaining almost optimal
algorithms for Max-Cut on a wide class of graphs in these models. In
particular, for any , we develop randomized approximation
algorithms achieving a ratio of to the optimum for Max-Cut on
bipartite graphs in the model, and on general graphs in the
model.
We further present efficient deterministic algorithms, including a
-approximation for Max-Dicut in our models, thus improving the best known
(randomized) ratio of . Our algorithms make non-trivial use of the greedy
approach of Buchbinder et al. (SIAM Journal on Computing, 2015) for maximizing
an unconstrained (non-monotone) submodular function, which may be of
independent interest
Gas-phase CO2 emission toward Cepheus A East: the result of shock activity?
We report the first detection of gas-phase CO2 emission in the star-forming
region Cepheus A East, obtained by spectral line mapping of the v2 bending mode
at 14.98 micron with the Infrared Spectrograph (IRS) instrument onboard the
Spitzer Space Telescope. The gaseous CO2 emission covers a region about 35'' x
25'' in extent, and results from radiative pumping by 15 micron continuum
photons emanating predominantly from the HW2 protostellar region. The gaseous
CO2 exhibits a temperature distribution ranging from 50 K to 200 K. A
correlation between the gas-phase CO2 distribution and that of H2 S(2), a
tracer of shock activity, indicates that the CO2 molecules originate in a cool
post-shock gas component associated with the outflow powered by HW2. The
presence of CO2 ice absorption features at 15.20 micron toward this region and
the lack of correlation between the IR continuum emission and the CO2 gas
emission distribution further suggest that the gaseous CO2 molecules are mainly
sputtered off grain mantles -- by the passage of slow non-dissociative shocks
with velocities of 15-30 km/s -- rather than sublimated through grain heating.Comment: 11 pages, 6 figures, accepted for publication in ApJ
Uncovering the kiloparsec-scale stellar ring of NGC5128
We reveal the stellar light emerging from the kiloparsec-scale, ring-like
structure of the NGC5128 (Centaurus A) galaxy in unprecedented detail. We use
arcsecond-scale resolution near infrared images to create a "dust-free" view of
the central region of the galaxy, which we then use to quantify the shape of
the revealed structure. At the resolution of the data, the structure contains
several hundreds of discreet, point-like or slightly elongated sources. Typical
extinction corrected surface brightness of the structure is K_S = 16.5
mag/arcsec^2, and we estimate the total near infrared luminosity of the
structure to be M = -21 mag. We use diffraction limited (FWHM resolution of ~
0.1", or 1.6 pc) near infrared data taken with the NACO instrument on VLT to
show that the structure decomposes into thousands of separate, mostly
point-like sources. According to the tentative photometry, the most luminous
sources have M_K = -12 mag, naming them red supergiants or relatively low-mass
star clusters. We also discuss the large-scale geometry implied by the
reddening signatures of dust in our near infrared images.Comment: 5 pages, 4 figures, accepted for publication in A&A Letters. A
version with high resolution images can be downloaded from
http://www.helsinki.fi/~jtkainul/CenALette
- âŠ