1,640 research outputs found
Analysis of the Type IIn Supernova 1998S: Effects of Circumstellar Interaction on Observed Spectra
We present spectral analysis of early observations of the Type IIn supernova
1998S using the general non-local thermodynamic equilibrium atmosphere code \tt
PHOENIX}. We model both the underlying supernova spectrum and the overlying
circumstellar interaction region and produce spectra in good agreement with
observations. The early spectra are well fit by lines produced primarily in the
circumstellar region itself, and later spectra are due primarily to the
supernova ejecta. Intermediate spectra are affected by both regions. A
mass-loss rate of order \msol yr is inferred
for a wind speed of 100-1000 \kmps. We discuss how future self-consistent
models will better clarify the underlying progenitor structure.Comment: to appear in ApJ, 2001, 54
On the Spectroscopic Diversity of Type Ia Supernovae
A comparison of the ratio of the depths of two absorption features in the
spectra of TypeIa supernovae (SNe Ia) near the time of maximum brightness with
the blueshift of the deep red Si II absorption feature 10 days after maximum
shows that the spectroscopic diversity of SNe Ia is multi-dimensional. There is
a substantial range of blueshifts at a given value of the depth ratio. We also
find that the spectra of a sample of SNe Ia obtained a week before maximum
brightness can be arranged in a ``blueshift sequence'' that mimics the time
evolution of the pre-maximum-light spectra of an individual SN Ia, the well
observed SN 1994D. Within the context of current SN Ia explosion models, we
suggest that some of the SNe Ia in our sample were delayed-detonations while
others were plain deflagrations.Comment: accepted for publication in ApJ
Two- and three-dimensional simulations of core-collapse supernovae with CHIMERA
Ascertaining the core-collapse supernova mechanism is a complex, and yet
unsolved, problem dependent on the interaction of general relativity,
hydrodynamics, neutrino transport, neutrino-matter interactions, and nuclear
equations of state and reaction kinetics. Ab initio modeling of core-collapse
supernovae and their nucleosynthetic outcomes requires care in the coupling and
approximations of the physical components. We have built our multi-physics
CHIMERA code for supernova modeling in 1-, 2-, and 3-D, using ray-by-ray
neutrino transport, approximate general relativity, and detailed neutrino and
nuclear physics. We discuss some early results from our current series of
exploding 2D simulations and our work to perform computationally tractable
simulations in 3D using the "Yin-Yang" grid.Comment: Proceedings of the 12th Symposium on Nuclei in the Cosmos. 5-12
August 2012. Cairns, Australia. Published online at
http://pos.sissa.it/archive/conferences/146/208/NIC%20XII_208.pdf Corrected
typ
Advancing Nucleosynthesis in Self-consistent, Multidimensional Models of Core-Collapse Supernovae
We investigate core-collapse supernova (CCSN) nucleosynthesis in polar
axisymmetric simulations using the multidimensional radiation hydrodynamics
code CHIMERA. Computational costs have traditionally constrained the evolution
of the nuclear composition in CCSN models to, at best, a 14-species
-network. Such a simplified network limits the ability to accurately
evolve detailed composition, neutronization and the nuclear energy generation
rate. Lagrangian tracer particles are commonly used to extend the nuclear
network evolution by incorporating more realistic networks in post-processing
nucleosynthesis calculations. Limitations such as poor spatial resolution of
the tracer particles, estimation of the expansion timescales, and determination
of the "mass-cut" at the end of the simulation impose uncertainties inherent to
this approach. We present a detailed analysis of the impact of these
uncertainties on post-processing nucleosynthesis calculations and implications
for future models.Comment: Proceedings of the 13th Symposium on Nuclei in the Cosmos. 7-11 July
2014. Debrecen, Hungar
- âŠ