20 research outputs found

    New photoactive Ir(III) complexes to target DNA

    No full text
    info:eu-repo/semantics/nonPublishe

    Excited-state behavior and photoinduced electron transfer of pH-sensitive Ir(III) complexes with cyclometallation (C/N–) ratios between 0/6 and 3/3

    No full text
    The first coordination sphere of Ir(III) 2,2′ -bipyridine / 2-phenylpyridine complexes can be tuned to achieve either C– or N–chelation in ratios that range between 0/6 and 3/3. Of particular interest is the synthesis of Ir(III) complexes bearing a 2,2′ -bipyridine ligand coordinated in a N,C3 pattern, leaving an exposed pyridine moiety, accessible for acid-base chemistry or coordination to a second transition metal center. The protonated forms of these “rolled-over” Ir(III) complexes were isolated in a straight-forward procedure using trifluoroacetic acid. The photophysical, photochemical and electrochemical properties of both the protonated and unprotonated Ir(III) complexes were investigated by steady-state and time-resolved spectroscopies, as well as by density functional theory calculations. The nature of the excited states was shown to depend on both the ligand coordination pattern and protonation state of the complex. In addition, the unprotonated and protonated analogues were efficiently quenched by hydroquinone and benzoquinone in acetonitrile with quenching rate constants close to the solvent diffusion limit. The results presented herein have direct implications for proton sensitive photoredox chemistry and the development of photo-acids and photo-bases
    corecore