143 research outputs found
Large changes in Great Britain’s vegetation and agricultural land-use predicted under unmitigated climate change
This is the author accepted manuscript. The final version is available from IOP Publishing via the DOI in this recordData availability:
The parameter values used for JULES is available from the suite u-ao645 and branch ‘full_UK’ on the Rosie
repository: https://code.metoffice.gov.uk/trac/roses-u (registration required). The data that support the
findings of this study are openly available at DOI.The impact of climate change on vegetation including agricultural production has been the focus of many studies. Climate change is expected to have heterogeneous effects across locations globally, and the diversity of land uses characterising Great Britain (GB) presents a unique opportunity to test methods for assessing climate change effects and impacts. GB is a relatively cool and damp country, hence, the warmer and generally drier growing season conditions projected for the future are expected to increase arable production. Here we use state-of-the-art, kilometre-scale climate change scenarios to drive a land surface model (JULES; Joint UK Land Environment Simulator) and an ECOnometric AGricultural land use model (ECO-AG). Under unmitigated climate change, by the end of the century, the growing season in GB is projected to get >5°C warmer and 140 mm drier on average. Rising levels of atmospheric CO2 are predicted to counteract the generally negative impacts of climate change on vegetation productivity in JULES. Given sufficient precipitation, warming favours higher value arable production over grassland agriculture, causing a predicted westward expansion of arable farming in ECO-AG. However, drying in the East and Southeast, without any CO2 fertilisation effect, is severe enough to cause a predicted reversion from arable to grassland farming. Irrigation, if implemented, could maintain this land in arable production. However, the predicted irrigation demand of ~200 mm (per growing season) in many locations is comparable to annual predicted runoff, potentially demanding large-scale redistribution of water between seasons and/or across the country. The strength of the CO2 fertilisation effect emerges as a crucial uncertainty in projecting the impact of climate change on GB vegetation, especially farming land-use decisions.Natural Environment Research Council (NERC)Joint UK BEIS/Defra Met Office Hadley Centre Climate Programm
Shifts in national land use and food production in Great Britain after a climate tipping point
This is the author accepted manuscript. The final version is available from Nature Research via the DOI in this recordData availability: The modelled output data that support the findings of this study are openly available from: Smith, G. S. & Ritchie, P. D. L. (NERC Environmental Information Data Centre:
639 doi.org/10.5285/e1c1dbcf-2f37-429b-af19-a730f98600f6, 2019).Climate change is expected to impact agricultural land use. Steadily accumulating
changes in temperature and water availability can alter the relative profitability of
different farming activities and promote land use changes. There is also potential for
high-impact ‘climate tipping points’ where abrupt, non-linear change in climate occurs
- such as the potential collapse of the Atlantic Meridional Overturning Circulation
(AMOC). Here, using data from Great Britain, we develop a methodology to analyse the
impacts of a climate tipping point on land use and economic outcomes for agriculture.
We show that economic/land use impacts of such a tipping point are likely to include
widespread cessation of arable farming with losses of agricultural output, an order of
magnitude larger than the impacts of climate change without an AMOC collapse. The
agricultural effects of AMOC collapse could be ameliorated by technological
adaptations such as widespread irrigation, but the amount of water required and the
costs appear prohibitive in this instance.Natural Environment Research Council (NERC)Alan Turing Institut
Evolutionary connectionism: algorithmic principles underlying the evolution of biological organisation in evo-devo, evo-eco and evolutionary transitions
The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term “evolutionary connectionism” to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary systems and modify the adaptive capabilities of natural selection over time. We review the evidence supporting the functional equivalences between the domains of learning and of evolution, and discuss the potential for this to resolve conceptual problems in our understanding of the evolution of developmental, ecological and reproductive organisations and, in particular, the major evolutionary transitions
Oxidative Modifications of Rat Liver Cell Components During Fasciola hepatica Infection
The aim of this paper was to assess the influence of Fasciola hepatica infection on oxidative modifications of rat liver cell components such as proteins and lipids. Wistar rats were infected per os with 30 metacercariae of F. hepatica. Activities and concentrations of liver damage markers were determined in the 4th, 7th, and 10th week postinfection (wpi). A decrease in antioxidant capacity of the host liver, manifested by a decrease in total antioxidant status (TAS), was observed. Diminution of antioxidant abilities resulted in enhanced oxidative modifications of lipids and proteins. F. hepatica infection enhanced lipid peroxidation, which was visible in the statistically significant increase in the level of different lipid peroxidation products such as conjugated dienes (CDs), lipid hydroperoxides (LOOHs), malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE). The level of protein modification markers in the rat liver was also significantly changed and the most intensified changes were observed at seventh week postinfection. Concentration of carbonyl groups and dityrosine was significantly increased, whereas the level of tryptophan and sulfhydryl and amino groups was decreased. Changes in the antioxidant abilities of the liver and in the lipid and protein structure of the cell components resulted in destruction of the function of the liver. F. hepatica infection was accompanied by raising serum activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) as markers of liver damage. A significant decrease in lysosomal as well as in the total activity of cathepsin B during fasciolosis was also observed
Global carbon budget 2019
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere-the "global carbon budget"-is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFF) are based on energy statistics and cement production data, while emissions from land use change (ELUC), mainly deforestation, are based on land use and land use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2009-2018), EFF was 9:5±0:5 GtC yr-1, ELUC 1:5±0:7 GtC yr-1, GATM 4:9±0:02 GtC yr-1 (2:3±0:01 ppm yr-1), SOCEAN 2:5±0:6 GtC yr-1, and SLAND 3:2±0:6 GtC yr-1, with a budget imbalance BIM of 0.4 GtC yr-1 indicating overestimated emissions and/or underestimated sinks. For the year 2018 alone, the growth in EFF was about 2.1% and fossil emissions increased to 10:0±0:5 GtC yr-1, reaching 10 GtC yr-1 for the first time in history, ELUC was 1:5±0:7 GtC yr-1, for total anthropogenic CO2 emissions of 11:5±0:9 GtC yr-1 (42:5±3:3 GtCO2). Also for 2018, GATM was 5:1±0:2 GtC yr-1 (2:4±0:1 ppm yr-1), SOCEAN was 2:6±0:6 GtC yr-1, and SLAND was 3:5±0:7 GtC yr-1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 407:38±0:1 ppm averaged over 2018. For 2019, preliminary data for the first 6-10 months indicate a reduced growth in EFF of C0:6% (range of.0:2% to 1.5 %) based on national emissions projections for China, the USA, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. Overall, the mean and trend in the five components of the global carbon budget are consistently estimated over the period 1959-2018, but discrepancies of up to 1 GtC yr-1 persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations shows (1) no consensus in the mean and trend in land use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Le Quéré et al., 2018a, b, 2016, 2015a, b, 2014, 2013). The data generated by this work are available at https://doi.org/10.18160/gcp-2019 (Friedlingstein et al., 2019). © 2019 by the authors
A tectonically driven Ediacaran oxygenation event.
The diversification of complex animal life during the Cambrian Period (541-485.4 Ma) is thought to have been contingent on an oxygenation event sometime during ~850 to 541 Ma in the Neoproterozoic Era. Whilst abundant geochemical evidence indicates repeated intervals of ocean oxygenation during this time, the timing and magnitude of any changes in atmospheric pO₂ remain uncertain. Recent work indicates a large increase in the tectonic CO₂ degassing rate between the Neoproterozoic and Paleozoic Eras. We use a biogeochemical model to show that this increase in the total carbon and sulphur throughput of the Earth system increased the rate of organic carbon and pyrite sulphur burial and hence atmospheric pO₂. Modelled atmospheric pO₂ increases by ~50% during the Ediacaran Period (635-541 Ma), reaching ~0.25 of the present atmospheric level (PAL), broadly consistent with the estimated pO₂ > 0.1-0.25 PAL requirement of large, mobile and predatory animals during the Cambrian explosion
IPCC reasons for concern regarding climate change risks
The reasons for concern framework communicates scientific understanding about risks in relation to varying levels of climate change. The framework, now a cornerstone of the IPCC assessments, aggregates global risks into five categories as a function of global mean temperature change. We review the framework's conceptual basis and the risk judgments made in the most recent IPCC report, confirming those judgments in most cases in the light of more recent literature and identifying their limitations. We point to extensions of the framework that offer complementary climate change metrics to global mean temperature change and better account for possible changes in social and ecological system vulnerability. Further research should systematically evaluate risks under alternative scenarios of future climatic and societal conditions
- …