27 research outputs found
Envisioning the future of aquatic animal tracking: Technology, science, and application
Electronic tags are significantly improving our understanding of aquatic animal behavior and are emerging as key sources of information for conservation and management practices. Future aquatic integrative biology and ecology studies will increasingly rely on data from electronic tagging. Continued advances in tracking hardware and software are needed to provide the knowledge required by managers and policymakers to address the challenges posed by the world's changing aquatic ecosystems. We foresee multiplatform tracking systems for simultaneously monitoring the position, activity, and physiology of animals and the environment through which they are moving. Improved data collection will be accompanied by greater data accessibility and analytical tools for processing data, enabled by new infrastructure and cyberinfrastructure. To operationalize advances and facilitate integration into policy, there must be parallel developments in the accessibility of education and training, as well as solutions to key governance and legal issues
The quest for successful Atlantic salmon restoration: perspectives, priorities, and maxims
Atlantic salmon is often a focal species of restoration efforts throughout the north Atlantic and it is therefore an excellent case study for how best to design programmes to address and mitigate threats and correct population declines. This perspective is written to promote the work that has been accomplished towards restoration of Atlantic salmon populations and synthesize how we believe the lessons can be used effectively to support efforts by management agencies to restore populations. We reviewed where restoration is needed for Atlantic salmon, agreed on definitions for three levels of successful restoration, and then applied these criteria to 49 published papers focused on Atlantic salmon restoration. We identified 16 successful examples of restoration among 49 papers reviewed and discussed what interventions led to success versus failure. We then addressed key questions about when hatchery stocking should be used as part of a restoration measure and whether local restoration efforts are enough when these wide-ranging species encounter broad-scale changes in the north Atlantic, specifically related to issues of climate change and to marine survival. We advise to avoid restoration as much as possible by protecting and managing existing populations and when restoration is necessary, problems should be identified and addressed in partnership with river users. With appropriate resources and research to resolve ongoing mysteries, restoration of lost Atlantic salmon populations is absolutely feasible
A comparative study on accelerated weathering tests of wool fabrics
This work has used two lightboxes with Philips 500 W MBTF lamps for a comparative trial on the photoyellowing evaluation of untreated wool fabrics under dry and wet conditions. An investigation was made to account for different trends of photoyellowing of the same wool fabric when irradiated by the two lightboxes. The fabric specimens irradiated in one lamp experienced increasing yellowing with irradiation time while specimens from the same wool fabric but irradiated under the other lamp manifested no noticeable color change. These differences are attributed to the susceptibility of wool to small spectral differences between the two MBTF lamps. Furthermore, the color fading results obtained from the commonly used blue wool standard (BWS) references from L1 to L3 show that these reference materials could not effectively reveal changes caused by the spectral differences in two MBTF lamps. These results have important implications for conducting accelerated weathering tests on spectrum-sensitive textile materials, and considerable care should be taken when using BWSs to ensure reliable and consistent irradiation results.<br /
Biologging in combination with biotelemetry reveals behavior of atlantic salmon following exposure to capture and handling stressors
We investigated the response of Atlantic salmon (Salmo salar) to capture and handling stressors by analyzing fine-scale locomoto