475 research outputs found
Significant initial results from the environmental measurements experiment on ATS-6
The Applications Technology Satellite (ATS-6), launched into synchronous orbit on 30 May 1974, carried a set of six particle detectors and a triaxial fluxgate magnetometer. The particle detectors were able to determine the ion and electron distribution functions from 1 to greater than 10 to the 8th power eV. It was found that the magnetic field is weaker and more tilted than predicted by models which neglect internal plasma and that there is a seasonal dependence to the magnitude and tilt. ATS-6 magnetic field measurements showed the effects of field-aligned currents associated with substorms, and large fluxes of field-aligned particles were observed with the particle detectors. Encounters with the plasmasphere revealed the existence of warm plasma with temperatures up to 30 eV. A variety of correlated waves in both the particles and fields were observed: pulsation continuous oscillations, seen predominantly in the plasmasphere bulge; ultralow frequency (ULF) standing waves; ring current proton ULF waves; and low frequency waves that modulate the energetic electrons. In additon, large scale waves on the energetic-ion-trapping boundary were observed, and the intensity of energetic electrons was modulated in association with the passage of sector boundaries of the interplanetary magnetic field
Experimental investigation of possible geomagnetic feedback from energetic (0.1 to 16 keV) terrestrial O(+) ions in the magnetotail current sheet
Data from energetic ion mass spectrometers on the ISEE 1 and AMPTE/CCE spacecraft are combined with geomagnetic and solar indices to investigate, in a statistical fashion, whether energized O(+) ions of terrestrial origin constitute a source of feedback which triggers or amplifies geomagnetic activity as has been suggested in the literature, by contributing a destabilizing mass increase in the magnetotail current sheet. The ISEE 1 data (0.1-16 keV/e) provide in situ observations of the O(+) concentration in the central plasma sheet, inside of 23 R(sub E), during the rising and maximum phases of solar cycle 21, as well as inner magnetosphere data from same period. The CCE data (0.1-17 keV/e) taken during the subsequent solar minimum all within 9 R(sub E). provide a reference for long-term variations in the magnetosphere O(+) content. Statistical correlations between the ion data and the indices, and between different indices. all point in the same direction: there is probably no feedback specific to the O(+) ions, in spite of the fact that they often contribute most of the ion mass density in the tail current sheet
Diurnal salivary cortisol concentrations in Parkinsonâs disease: increased total secretion and morning cortisol concentrations
Background:Parkinsonâs disease (PD) is a chronic neurodegenerative disorder. There is limited knowledge about the function of the hypothalamic-pituitary-adrenal axis in PD. The primary aim of this prospective study was to analyze diurnal salivary cortisol concentrations in patients with PD and correlate these with age, gender, body mass index (BMI), duration of PD, and pain. The secondary aim was to compare the results with a healthy reference group. Methods:Fifty-nine PD patients, 35 women and 24 men, aged 50â79 years, were recruited. The reference group comprised healthy individuals matched for age, gender, BMI, and time point for sampling. Salivary cortisol was collected at 8 am, 1 pm, and 8 pm, and 8 am the next day using cotton-based Salivette Âźtubes and analyzed using SpectriaÂźCortisol I125. A visual analog scale was used for estimation of pain. Results:The median cortisol concentration was 16.0 (5.8â30.2) nmol/L at 8 am, 5.8 (3.0â16.4) at 1 pm, 2.8 (1.6â8.0) at 8 pm, and 14.0 (7.5â28.7) at 8 am the next day. Total secretion and rate of cortisol secretion during the day (8 amâ8 pm) and the concentration of cortisol on the next morning were lower (12.5 nmol/L) in the reference group. No significant correlations with age, gender, BMI, duration of PD, Hoehn and Yahr score, Unified Parkinsonâs Disease Rating Scale III score, gait, pain, or cortisol concentrations were found. Conclusion:The neurodegenerative changes in PD does not seem to interfere with the hypothalamic-pituitary-adrenal axis. Salivary cortisol concentrations in PD patients were increased in the morning compared with the reference group, and were not influenced by motor dysfunction, duration of disease, or coexistence of chronic or acute pain
Exploring sources of magnetospheric plasma using multispecies MHD
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94632/1/jgra20151.pd
Effects of Timing of Grazing on Arthropod Communities in Semi-Natural Grasslands
Arthropod communities were investigated in two Swedish semi-natural grasslands, each subject to two types of grazing regime: conventional grazing from May to September (continuous grazing) and traditional late management from mid-July (late grazing). Pitfall traps were used to investigate abundance of carabids, spiders, and ants over the grazing season. Ant abundance was also measured by mapping nest density during three successive years. Small spiders, carabids and ants (Myrmica spp.) were more abundant in continuous grazing than in late grazing while larger spiders, carabids, and ants (Formica spp.) were more abundant in late grazing. The overall abundance of carabids was higher in continuous grazing in the early summer but higher in late grazing in the late summer. The switch of preference from continuous to late grazing coincided with the time for larvae hibernating species replacing adult hibernating. We discuss possible explanations for the observed responses in terms of effects of grazing season on a number of habitat variables for example temperature, food resources, structure of vegetation, litter layer, competition, and disturbance
Recommended from our members
A new source of suprathermal O+ions near the dayside polar cap boundary
A new dayside source of O+ ions for the polar magnetosphere is described, and a statistical survey presented of upward flows of O+ ions using 2 years of data from the retarding ion mass spectrometer (RIMS) experiment on board DE 1, at geocentric distances below 3 RE and invariant latitudes above 40°. The flows are classified according to their spin angle distributions. It is believed that the spacecraft potential near perigee is generally less than +2 V, in which case the entire O+ population at energies below about 60 eV is sampled. Examples are given of field-aligned flow and of transversely accelerated âcoreâ O+ ions; in the latter events a large fraction of the total O+ ion population has been transversely accelerated, and in some extreme cases all the observed ions (of all ion species) have been accelerated, and no residual cold population is observed (âtoroidalâ distributions). However, by far the most common type of O+ upflow seen by DE RIMS lies near the dayside polar cap boundary (particularly in the prenoon sector) and displays an asymmetric spin angle distribution. In such events the ions carry an upward heat flux, and strong upflow of all species is present (H+, He+, O+, O++, and N+ have all been observed with energies up to about 30 eV, but with the majority of ions below about 2 eV); hence, these have been termed upwelling ion events. The upwelling ions are embedded in larger regions of classical light ion polar wind and are persistently found under the following conditions: at geocentric distances greater than 1.4 RE; at all Kp in summer, but only at high Kp in winter. Low-energy conical ions (<30 eV) are only found near the equatorial edge of the events, the latitude of which moves equatorward with increasing Kp and is highly correlated with the location of field-aligned currents. The RIMS data are fully consistent with a âmass spectrometer effect,â whereby light ions and the more energetic O+ ions flow into the lobes and mantle and hence the far-tail plasma sheet, but lower-energy O+ is swept across the polar cap by the convection electric field, potentially acting as a source for the nightside auroral acceleration regions. The occurrence probability of upwelling ion events, as compared to those of low-altitude transversely accelerated core ions and of field-aligned flow, suggests this could be the dominant mechanism for supplying the nightside auroral acceleration region, and subsequently the ring current and near-earth plasma sheet, with ionospheric O+ ions. It is shown that the total rate of O+ outflow in upwelling ion events (greater than 10^25 s^{â1}) is sufficient for the region near the dayside polar cap boundary to be an important ionospheric heavy ion source
Cover to Volume 3
The fibroblast mitogen platelet-derived growth factor -BB (PDGF-BB) induces a transient expression of the orphan nuclear receptor NR4A1 (also named Nur77, TR3 or NGFIB). The aim of the present study was to investigate the pathways through which NR4A1 is induced by PDGF-BB and its functional role. We demonstrate that in PDGF-BB stimulated NIH3T3 cells, the MEK1/2 inhibitor CI-1040 strongly represses NR4A1 expression, whereas Erk5 downregulation delays the expression, but does not block it. Moreover, we report that treatment with the NF-ÎșB inhibitor BAY11-7082 suppresses NR4A1 mRNA and protein expression. The majority of NR4A1 in NIH3T3 was found to be localized in the cytoplasm and only a fraction was translocated to the nucleus after continued PDGF-BB treatment. Silencing NR4A1 slightly increased the proliferation rate of NIH3T3 cells; however, it did not affect the chemotactic or survival abilities conferred by PDGF-BB. Moreover, overexpression of NR4A1 promoted anchorage-independent growth of NIH3T3 cells and the glioblastoma cell lines U-105MG and U-251MG. Thus, whereas NR4A1, induced by PDGF-BB, suppresses cell growth on a solid surface, it increases anchorage-independent growth
Induced pluripotent stem cell-derived endothelial cells promote angiogenesis and accelerate wound closure in a murine excisional wound healing model
Chronic wounds are a major complication in patients with cardiovascular diseases. Cell therapies have shown potential to stimulate wound healing, but clinical trials using adult stem cells have been tempered by limited numbers of cells and invasive procurement procedures. Induced pluripotent stem cells (iPSCs) have several advantages of other cell types, for example they can be generated in abundance from patientsâ somatic cells (autologous) or those from a matched donor. iPSCs can be efficiently differentiated to functional endothelial cells (iPSC-ECs). Here, we used a murine excisional wound model to test the pro-angiogenic properties of iPSC-ECs in wound healing. Two full-thickness wounds were made on the dorsum of NOD-SCID mice and splinted. iPSC-ECs (5 Ă 105) were topically applied to one wound, with the other serving as a control. Treatment with iPSC-ECs significantly increased wound perfusion and accelerated wound closure. Expression of endothelial cell (EC) surface marker, platelet endothelial cell adhesion molecule (PECAM-1) (CD31), and pro-angiogenic EC receptor, Tie1, mRNA was up-regulated in iPSC-EC treated wounds at 7 days post-wounding. Histological analysis of wound sections showed increased capillary density in iPSC-EC wounds at days 7 and 14 post-wounding, and increased collagen content at day 14. Anti-GFP fluorescence confirmed presence of iPSC-ECs in the wounds. Bioluminescent imaging (BLI) showed progressive decline of iPSC-ECs over time, suggesting that iPSC-ECs are acting primarily through short-term paracrine effects. These results highlight the pro-regenerative effects of iPSC-ECs and demonstrate that they are a promising potential therapy for intractable wounds.ZoĂ« E. Clayton, Richard P. Tan, Maria M. Miravet, Katarina Lennartsson, John P. Cooke, Christina A. Bursill, Steven G. Wise, Sanjay Pate
Ion kinetic properties in Mercury's pre-midnight plasma sheet
With data from the Fast Imaging Plasma Spectrometer sensor on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft, we demonstrate that the average distributions for both solar wind and planetary ions in Mercuryâs pre-midnight plasma sheet are well-described by hot Maxwell-Boltzmann distributions. Temperatures and densities of the H+ ranges ~1â10 cm3 and ~5â30 MK, respectively, maintain thermal pressures of ~1 nPa. The dominant planetary ion, Na+ abundances with respect to H+ and exhibit mass-proportional ion temperatures, indicative of a reconnection-dominated heating in the magnetosphere. Conversely, planetary ion species are accelerated to similar average energies greater by a factor of ~1.5 than that of H+ acceleration in an electric potential, consistent with the presence of a strong centrifugal acceleration process in Mercuryâs magnetosphere
- âŠ