363 research outputs found

    Predictors of length of stay in forensic psychiatry: The influence of perceived risk of violence.

    Get PDF
    This study describes the prevalence of adverse events and length of stay in forensic psychiatric patients with and without a restriction order. Detailed clinical and administrative information from medical records and written court decisions was gathered retrospectively from admission until discharge for a Swedish population-based, consecutive cohort of forensic psychiatric patients (n=125). The median length of stay for the whole cohort was 951days, but patients with a restriction order stayed in hospital almost five times as long as patients without. Restriction orders were related to convictions for violent crime, but not for any other differences in demographic or clinical variables. The majority of the patients (60%) were involved in adverse events (violence, threats, substance abuse, or absconding) at some time during their treatment. Patients with restriction orders were overrepresented in violent and threat events. Previous contact with child and adolescence psychiatric services, current violent index crime, psychotic disorders, a history of substance, and absconding during treatment predicted longer length of stay. Being a parent, high current Global Assessment of Functioning scores, and mood disorders were all significantly related to earlier discharge. In a stepwise Cox regression analysis current violent index crime and absconding remained risk factors for a longer hospital stay, while a diagnosis of mood disorder was significantly related to a shorter length of stay

    Concept for high speed vocal cord imaging with swept-source optical coherence tomography

    Get PDF
    Optical coherence tomography (OCT) enables non-invasive depth-resolved investigation of laryngeal tissue. However, with conventional systems, OCT cross-sectional images of vibrating vocal cords always suffer from motion artifacts. This is the case even at low phonation frequencies of about 100 Hz. Motion artifacts of predictable repetitive movements can be avoided with carefully timed acquisitions. Irregular, non-repetitive movements, e.g. disturbed vocal cord vibration caused by laryngeal disorders, require different strategies, such as the use of high frame rates. We present a novel concept for dynamic vocal cord imaging with a high speed 1.6 MHz swept-source OCT system. Due to the high image rate, a graphics processing unit (GPU) based signal processing software has been developed in order to obtain real time OCT images. To demonstrate the feasibility of our approach on vibrating samples, we present a laboratory setup which includes a MHz swept source for OCT. To enable the transfer of our setup to clinical applications a concept for a curved rigid laryngoscope design, integrating the optical components for high-speed OCT, is proposed. Copyright © 2019 SPIE

    Engineering of Aspergillus niger for the production of secondary metabolites

    Get PDF
    Background: Filamentous fungi can each produce dozens of secondary metabolites which are attractive as therapeutics, drugs, antimicrobials, flavour compounds and other high-value chemicals. Furthermore, they can be used as an expression system for eukaryotic proteins. Application of most fungal secondary metabolites is, however, so far hampered by the lack of suitable fermentation protocols for the producing strain and/or by low product titers. To overcome these limitations, we report here the engineering of the industrial fungus Aspergillus niger to produce high titers (up to 4,500 mg • l-1) of secondary metabolites belonging to the class of nonribosomal peptides. Results: For a proof-of-concept study, we heterologously expressed the 351 kDa nonribosomal peptide synthetase ESYN from Fusarium oxysporum in A. niger. ESYN catalyzes the formation of cyclic depsipeptides of the enniatin family, which exhibit antimicrobial, antiviral and anticancer activities. The encoding gene esyn1 was put under control of a tunable bacterial-fungal hybrid promoter (Tet-on) which was switched on during early-exponential growth phase of A. niger cultures. The enniatins were isolated and purified by means of reverse phase chromatography and their identity and purity proven by tandem MS, NMR spectroscopy and X-ray crystallography. The initial yields of 1 mg • l-1 of enniatin were increased about 950 fold by optimizing feeding conditions and the morphology of A. niger in liquid shake flask cultures. Further yield optimization (about 4.5 fold) was accomplished by cultivating A. niger in 5 l fed batch fermentations. Finally, an autonomous A. niger expression host was established, which was independent from feeding with the enniatin precursor D-2-hydroxyvaleric acid D-Hiv. This was achieved by constitutively expressing a fungal D-Hiv dehydrogenase in the esyn1-expressing A. niger strain, which used the intracellular ɑ-ketovaleric acid pool to generate D-Hiv. Conclusions: This is the first report demonstrating that A. niger is a potent and promising expression host for nonribosomal peptides with titers high enough to become industrially attractive. Application of the Tet-on system in A. niger allows precise control on the timing of product formation, thereby ensuring high yields and purity of the peptides produced.EC/FP7/607332/EU/Quantitative Biology for Fungal Secondary Metabolite Producers/QuantFungDFG, EXC 314, Unifying Concepts in Catalysi

    Influence of Auditory Cues on the Neuronal Response to Naturalistic Visual Stimuli in a Virtual Reality Setting

    Full text link
    Virtual reality environments offer great opportunities to study the performance of brain-computer interfaces (BCIs) in real-world contexts. As real-world stimuli are typically multimodal, their neuronal integration elicits complex response patterns. To investigate the effect of additional auditory cues on the processing of visual information, we used virtual reality to mimic safety-related events in an industrial environment while we concomitantly recorded electroencephalography (EEG) signals. We simulated a box traveling on a conveyor belt system where two types of stimuli – an exploding and a burning box – interrupt regular operation. The recordings from 16 subjects were divided into two subsets, a visual-only and an audio-visual experiment. In the visual-only experiment, the response patterns for both stimuli elicited a similar pattern – a visual evoked potential (VEP) followed by an event-related potential (ERP) over the occipital-parietal lobe. Moreover, we found the perceived severity of the event to be reflected in the signal amplitude. Interestingly, the additional auditory cues had a twofold effect on the previous findings: The P1 component was significantly suppressed in the case of the exploding box stimulus, whereas the N2c showed an enhancement for the burning box stimulus. This result highlights the impact of multisensory integration on the performance of realistic BCI applications. Indeed, we observed alterations in the offline classification accuracy for a detection task based on a mixed feature extraction (variance, power spectral density, and discrete wavelet transform) and a support vector machine classifier. In the case of the explosion, the accuracy slightly decreased by –1.64% p. in an audio-visual experiment compared to the visual-only. Contrarily, the classification accuracy for the burning box increased by 5.58% p. when additional auditory cues were present. Hence, we conclude, that especially in challenging detection tasks, it is favorable to consider the potential of multisensory integration when BCIs are supposed to operate under (multimodal) real-world conditions

    Toward a successful clinical neuroproteomics : the 11th HUPO Brain Proteome Project Workshop 3 March, 2009, Kolymbari, Greece

    Get PDF
    The HUPO Brain Proteome Project (HUPO BPP) held its 11th workshop in Kolymbari on March 3, 2009. The principal aim of this project is to obtain a better understanding of neurodiseases and ageing, with the ultimate objective of discovering prognostic and diagnostic biomarkers, in addition to the development of novel diagnostic techniques and new medications. The attendees came together to discuss sub-project progress in the clinical neuroproteomics of human or mouse models of Alzheimer's and Parkinson's disease, and to define the needs and guidelines required for more advanced proteomics approaches. With the election of new steering committees, the members of the HUPO BPP elaborated an actual plan promoting activities, outcomes, and future directions of the HUPO BPP to acquire new funding and new participants

    Attitude Determination in Space with Ambient Light Sensors using Machine Learning for Solar Cell Characterization

    Get PDF
    Exploration of novel thin-film solar cell technologies outreaches for their application in space. For extraterrestrial tests, irradiance conditions must be well determined to extract quantitative solar cell performances. Here, a new method for solar position determination is presented, based on parallelized ambient light sensor measurements is presented obtained from the sounding rocket experiment Organic and Hybrid Solar Cells In Space during the MAPHEUS-8 mission. The solar position evolution is optimized using stochastic and gradient-based methods in a Bayesian approach. Comparison with independent positioning estimates shows compelling agreement, lying mostly within 5° deviation. The inclusion of a simple Earth irradiation component mitigates a small systematic offset. Further, solution uncertainties are estimated with Monte-Carlo Markov-chain sampling. The point-source irradiation model's accuracy can compete with that of a camera-based trajectory. During equatorial Sun positions, the method's precision appears even higher––the 1σ uncertainty of the derived solar position is as small as 3° for the effective angular deviation. This simple sensor array triangulation method being complementary to other attitude determination methods shows reasonable accuracies and allows implementation in systems of limited computational capabilities to determine the solar position or irradiance conditions for space or terrestrial solar cell applications

    Genetic association of CDC2 with cerebrospinal fluid tau in Alzheimer's disease

    Get PDF
    We have recently reported that a polymorphism in the cell division cycle (CDC2) gene, designated Ex6 + 7I/D, is associated with Alzheimer's disease (AD). The CDC2 gene is located on chromosome 10q21.1 close to the marker D10S1225 linked to AD. Active cdc2 accumulates in neurons containing neurofibrillary tangles (NFT), a process that can precede the formation of NFT. Therefore, CDC2 is a promising candidate susceptibility gene for AD. We investigated the possible effects of the CDC2 polymorphism on cerebrospinal fluid (CSF) biomarkers in AD patients. CDC2 genotypes were evaluated in relation to CSF protein levels of total tau, phospho-tau and beta-amyloid (1-42) in AD patients and control individuals, and in relation to the amount of senile plaques and NFT in the frontal cortex and in the hippocampus in patients with autopsy-proven AD and controls. The CDC2 Ex6 + 7I allele was associated with a gene dose-dependent increase of CSF total tau levels (F-2,F- 626 = 7.0, p = 0.001) and the homozygous CDC2Ex6 +7II genotype was significantly more frequent among AD patients compared to controls (p = 0.006, OR = 1.57, 95% CI 1.13-2.17). Our results provide further evidence for an involvement of cdc2 in the pathogenesis of AD. Copyright (C) 2005 S. Karger AG, Basel

    Mitochondrial protein import

    Get PDF
    corecore