24 research outputs found

    TECHNICAL REPORT: Rapid confirmation of gene targeting in embryonic stem cells using two long-range PCR techniques

    Full text link
    Gene targeting in mouse embryonic stem (ES) cells generally includes the analysis of numerous colonies to identify a few with mutations resulting from homologous recombination with a targeting vector. Thus, simple and efficient screening methods are needed to identify targeted clones. Optimal screening approaches require probes from outside of the region included in the targeting vector to avoid detection of the more common random insertions. However, the use of large genomic fragments in targeting vectors can limit the availability of cloned DNA, thus necessitating a strategy to obtain unique flanking sequences. We describe a rapid method to identify sequences adjacent to cloned DNA using long-range polymerase chain reaction (PCR) amplification from a genomic DNA library, followed by direct nucleotide sequencing of the amplified fragment. We have used this technique in two independent gene targeting experiments to obtain genomic DNA sequences flanking the mouse cholecystokinin (CCK) and gastrin genes. The sequences were then used to design primers to characterize ES cell lines with CCK or gastrin targeted gene mutations, employing a second long-range PCR approach. Our results show that these two long-range PCR methods are generally useful to rapidly and accurately characterize allele structures in ES cellsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43859/1/11248_2004_Article_172516.pd

    <em>Enterococcus faecalis</em> Infection Causes Inflammation, Intracellular Oxphos-Independent ROS Production, and DNA Damage in Human Gastric Cancer Cells

    Get PDF
    Background: Achlorhydria caused by e.g. atrophic gastritis allows for bacterial overgrowth, which induces chronic inflammation and damage to the mucosal cells of infected individuals driving gastric malignancies and cancer. Enterococcus faecalis (E. faecalis) can colonize achlohydric stomachs and we therefore wanted to study the impact of E. faecalis infection on inflammatory response, reactive oxygen species (ROS) formation, mitochondrial respiration, and mitochondrial genetic stability in gastric mucosal cells. Methods: To separate the changes induced by bacteria from those of the inflammatory cells we established an in vitro E. faecalis infection model system using the gastric carcinoma cell line MKN74. Total ROS and superoxide was measured by fluorescence microscopy. Cellular oxygen consumption was characterized non-invasively using XF24 microplate based respirometry. Gene expression was examined by microarray, and response pathways were identified by Gene Set Analysis (GSA). Selected gene transcripts were verified by quantitative real-time polymerase chain reaction (qRT-PCR). Mitochondrial mutations were determined by sequencing. Results: Infection of MKN74 cells with E. faecalis induced intracellular ROS production through a pathway independent of oxidative phosphorylation (oxphos). Furthermore, E. faecalis infection induced mitochondrial DNA instability. Following infection, genes coding for inflammatory response proteins were transcriptionally up-regulated while DNA damage repair and cell cycle control genes were down-regulated. Cell growth slowed down when infected with viable E. faecalis and responded in a dose dependent manner to E. faecalis lysate. Conclusions: Infection by E. faecalis induced an oxphos-independent intracellular ROS response and damaged the mitochondrial genome in gastric cell culture. Finally the bacteria induced an NF-kappa B inflammatory response as well as impaired DNA damage response and cell cycle control gene expression

    Potential value of a rapid syndromic multiplex PCR for the diagnosis of native and prosthetic joint infections: a real-world evidence study

    Get PDF
    Introduction: The BIOFIRE Joint Infection (JI) Panel is a diagnostic tool that uses multiplex-PCR testing to detect microorganisms in synovial fluid specimens from patients suspected of having septic arthritis (SA) on native joints or prosthetic joint infections (PJIs). Methods: A study was conducted across 34 clinical sites in 19 European and Middle Eastern countries from March 2021 to June 2022 to assess the effectiveness of the BIOFIRE JI Panel. Results: A total of 1527 samples were collected from patients suspected of SA or PJI, with an overall agreement of 88.4 % and 85 % respectively between the JI Panel and synovial fluid cultures (SFCs). The JI Panel detected more positive samples and microorganisms than SFC, with a notable difference on Staphylococcus aureus, Streptococcus species, Enterococcus faecalis, Kingella kingae, Neisseria gonorrhoeae, and anaerobic bacteria. The study found that the BIOFIRE JI Panel has a high utility in the real-world clinical setting for suspected SA and PJI, providing diagnostic results in approximately 1 h. The user experience was positive, implying a potential benefit of rapidity of results' turnover in optimising patient management strategies. Conclusion: The study suggests that the BIOFIRE JI Panel could potentially optimise patient management and antimicrobial therapy, thus highlighting its importance in the clinical setting
    corecore