12 research outputs found

    A management strategy for sedentary nearshore species that uses marine protected areas as a reference

    Get PDF
    Classical approaches to fisheries stock assessment rely on methods that are not conducive to managing data-poor stocks. Moreover, many nearshore rocky reef species exhibit spatial variation in harvest pressure and demographic rates, further limiting traditional stock assessment approaches. Novel management strategies to overcome data limitations and account for spatial variability are needed. With the ever-increasing implementation of no-take marine protected areas (MPAs), there is great potential for improving decision making in management through comparisons of fished populations with populations in MPAs at spatially explicit scales. We developed a management strategy that uses a combination of data-based indicators sampled inside and outside of MPAs as well as model-based reference points for data-poor, sedentary nearshore species. We performed a management strategy evaluation of this MPA-based decision tree model for a hypothetical population of grass rockfish Sebastes rastrelliger in California. We introduced process, observation, and model uncertainty in numerous scenarios and compared these scenarios with the precautionary approach currently used to manage data-poor species. Our model consistently improved total catches while maintaining the biomass and spawning potential ratio at levels well within acceptable thresholds of management. We suggest further exploration of this MPA-based management approach, and we outline a collaborative research program in the California Channel Islands that may well be suited for testing an experimental management procedure

    Fish and invertebrate use of restored vs. natural oyster reefs in a shallow temperate latitude estuary

    Get PDF
    Coastal marine habitats continue to be degraded, thereby compelling large-scale restoration in many parts of the world. Whether restored habitats function similarly to natural habitats and fully recover lost ecosystem services is unclear. In estuaries, oyster reefs have been degraded by multiple anthropogenic activities including destructive fishing practices and reduced water quality, motivating restoration to maintain oyster fisheries and other ecosystem services, often at relatively high cost. We compared fish and invertebrate communities on recently restored (0–1 year post-restoration), older restored (3–4 years post-restoration), and natural oyster reefs to determine if and when restored reefs support functionally similar faunal communities. To test the influence of landscape setting on the faunal communities, the restored and natural reefs, as well as a control without reef present, were distributed among three landscapes (on the edge of salt marsh away from seagrass [salt marsh landscape], on mudflats [mudflat landscape], and near to seagrass and salt marsh [seagrass landscape]). Oyster density and biomass were greatest on restored reef habitat, as were those of non-oyster bivalve species. Total abundance of invertebrates was much greater on oyster reefs than in control plots, regardless of reef or landscape type, yet were frequently highest on older restored reefs. Meanwhile, juvenile fish densities were greatest on natural reefs, at intermediate densities on older restored reefs, and least abundant on controls. When comparing the effects of reef age and landscape setting, juvenile fish densities were greatest on younger reefs within the mudflat landscape. Collectively, these results indicate that oyster reefs harbor higher densities of resident invertebrate prey, which may explain why reef habitat is also important for juvenile fish. Laboratory and field experiments supported the notion that gag grouper (a predatory demersal fish) forage more effectively on oyster reefs than on unstructured mud bottom, whereas our experiments suggest that flounders that utilize oyster reefs likely forage on adjacent mud bottom. Because landscape setting influenced fish and invertebrate communities on restored reefs, the ecological consequences of landscape setting should be incorporated into restoration decision making and site selection to enhance the recovery of ecosystem goods and services

    Trophic interactions within the Ross Sea continental shelf ecosystem

    No full text
    The continental shelf of the Ross Sea is one of the Antarctic's most intensively studied regions. We review the available data on the region's physical characteristics (currents and ice concentrations) and their spatial variations, as well as components of the neritic food web, including lower and middle levels (phytoplankton, zooplankton, krill, fishes), the upper trophic levels (seals, penguins, pelagic birds, whales) and benthic fauna. A hypothetical food web is presented. Biotic interactions, such as the role of Euphausia crystallorophias and Pleuragramma antarcticum as grazers of lower levels and food for higher trophic levels, are suggested as being critical. The neritic food web contrasts dramatically with others in the Antarctic that appear to be structured around the keystone species Euphausia superba. Similarly, we suggest that benthic–pelagic coupling is stronger in the Ross Sea than in most other Antarctic regions. We also highlight many of the unknowns within the food web, and discuss the impacts of a changing Ross Sea habitat on the ecosystem

    International regulatory responses to global challenges in marine pollution and climate change

    No full text
    Marine pollution, also referred to as \u27pollution of the marine environment\u27, may occur as a result of different activities. Examples are land-based activities, vessel-related activitiese, dumping at sea, atmospheric and offshore hydrocarbon exploration, seabed mining, and so on. As discussed in Chapter 4, these types of marine pollution are often transboundary in nature and are harmful to human health and marine ecosystem. Similarly, climate change is a global issue involving the interests of all States. The Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), finalized and published in 2014, has further confirmed the existence of global warming when compared with the previous IPCC reports. It indicates that climate change has negatively affected natural and human systems on all continents and across the oceans, and asserts that 280substantial and sustained reduction of greenhouse gas (GHG) emissions would contribute to the tackling of climate change. 1 International issues need international responses. Both the marine pollution and climate change are issues with international dimensions, and thus require the global regulation by the international community
    corecore