446 research outputs found

    Pooled analysis of cardiac safety in patients with cancer treated with pertuzumab

    Get PDF
    Background: Pertuzumab, a human epidermal growth factor receptor (HER) 2 dimerization inhibitor, has demonstrated promising efficacy in combination with trastuzumab in patients with metastatic breast cancer. As HER signaling pathways are not only involved in oncogenesis, but also in myocardial homeostasis, an analysis of cardiac safety data was undertaken in a large group of patients treated with pertuzumab. Patients and methods: A complete database of patients treated with full-dose pertuzumab was used to describe the incidence of asymptomatic left ventricular systolic dysfunction (LVSD) and symptomatic heart failure (HF). Results: Information for 598 unique patients was available for the current analysis. Of the patients treated with pertuzumab alone (n = 331) or pertuzumab in combination with a non-anthracycline-containing cytotoxic (n = 175) or trastuzumab (n = 93), 23 (6.9%), 6 (3.4%), and 6 (6.5%), respectively, developed asymptomatic LVSD and 1 (0.3%), 2 (1.1%), and 1 (1.1%), respectively, displayed symptomatic HF. None of the 15 patients receiving both pertuzumab and erlotinib demonstrated LVSD. Conclusions: Patients treated with pertuzumab experienced relatively low levels of asymptomatic LVSD or symptomatic HF. There was no notable increase in cardiac side-effects when pertuzumab was given in combination with other anticancer agent

    Risk profiles and incidence of cardiovascular events across different cancer types

    Get PDF
    BACKGROUND: Cancer survivors are at increased risk for cardiovascular (CV) disease, although additional data are needed to better understand the incidence of CV events across different malignancies. This study sought to characterize the incidence of major adverse CV events [myocardial infarction, stroke, unstable angina (MACE), or heart failure (HF)] across multiple cancer types after cancer diagnosis. PATIENTS AND METHODS: Patients were identified from a USA-based administrative claims database who had index cancer diagnoses of breast, lung, prostate, melanoma, myeloma, kidney, colorectal, leukemia, or lymphoma between 2011 and 2019, with continuous enrollment for ≥12 months before diagnosis. Baseline CV risk factors and incidence rates of CV events post-index were identified for each cancer. Multivariable Cox hazards models assessed the cumulative incidence of MACE, accounting for baseline risk factors. RESULTS: Among 839 934 patients across nine cancer types, CV risk factors were prevalent. The cumulative incidence of MACE was highest in lung cancer and myeloma, and lowest in breast cancer, prostate cancer, and melanoma. MACE cumulative incidence for lung cancer was 26% by 4 years (2.7-fold higher relative to breast cancer). The incidence of stroke was especially pronounced in lung cancer, while HF was highest in myeloma and lung cancer. CONCLUSIONS: CV events were especially increased following certain cancer diagnoses, even after accounting for baseline risk factors. Understanding the variable patient characteristics and associated CV events across different cancers can help target appropriate CV risk factor modification and develop strategies to minimize adverse CV events and improve patient outcomes

    Clinicopathological classification of immune checkpoint inhibitor-associated myocarditis: Possible refinement by measuring macrophage abundance

    Get PDF
    BACKGROUND: Immune checkpoint inhibitor (ICI) myocarditis is associated with high morbidity and mortality. While endomyocardial biopsy (EMB) is considered a gold standard for diagnosis, the sensitivity of EMB is not well defined. Additionally, the pathological features that correlate with the clinical diagnosis of ICI-associated myocarditis remain incompletely understood. METHODS: We retrospectively identified and reviewed the clinicopathological features of 26 patients with suspected ICI-associated myocarditis based on institutional major and minor criteria. Seventeen of these patients underwent EMB, and the histopathological features were assessed by routine hematoxylin and eosin (H&E) staining and immunohistochemical (IHC) staining for CD68, a macrophage marker. RESULTS: Only 2/17 EMBs obtained from patients with suspected ICI myocarditis satisfied the Dallas criteria. Supplemental IHC staining and quantification of CD68 CONCLUSIONS: While the Dallas criteria can identify a subset of ICI-associated myocarditis patients, quantification of macrophage abundance may expand the diagnostic role of EMB. Failure to meet the traditional Dallas Criteria should not exclude the diagnosis of myocarditis

    Single quantum dot states measured by optical modulation spectroscopy

    Full text link
    Using optical modulation spectroscopy, we report the direct observation of absorption lines from excitons localized in GaAs single quantum dot potentials. The data provide a measurement of the linewidth, resonance energy, and oscillator strength of the transitions, and show that states which decay primarily by nonradiative processes can be directly probed using this technique. The experiments establish this technique for the characterization of single quantum dot transitions, thereby complementing luminescence studies. © 1999 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70527/2/APPLAB-75-19-2933-1.pd

    Culturable Root Endophyte Communities are Shaped by Both Warming and Plant Host Identity in the Rocky Mountains, USA

    Get PDF
    Understanding the biogeographic patterns of root-associated fungi and their sensitivity to temperature may improve predictions of future changes in terrestrial biodiversity and associated ecosystem processes, but data are currently limited. Anticipating change will require combining observational data, which predict how climatic factors limit current species distributions, with direct manipulations of climate, which can isolate responses to specific climate variables. Root endophytes are common symbionts of plants, particularly in arctic and alpine environments, yet their responses to climate warming are not resolved. Here, we directly cultured endophytic fungi from roots collected along altitudinal gradients in replicated mountain watersheds and from a 27 y field warming experiment in the Rocky Mountains, USA, to improve understanding of climate impacts on fungal root endophytes. Fungal taxa that were common at high elevations declined most under climate warming, whereas low elevation dominants responded neutrally or increased with experimental warming. Altitudinal gradients in fungal communities were strongly specific to the plant host species. Specifically, Poa species had 25–60% greater fungal isolate abundance and 25–38% greater fungal diversity at high elevations than at low elevation sites. In contrast, Festuca thurberi had 64% lower fungal diversity on roots at high elevation than at low elevation. Our results help to improve understanding of the potential for climate change to alter plant-fungal interactions in mountain ecosystems

    High-Level Production of Amorpha-4,11-Diene, a Precursor of the Antimalarial Agent Artemisinin, in Escherichia coli

    Get PDF
    BACKGROUND: Artemisinin derivatives are the key active ingredients in Artemisinin combination therapies (ACTs), the most effective therapies available for treatment of malaria. Because the raw material is extracted from plants with long growing seasons, artemisinin is often in short supply, and fermentation would be an attractive alternative production method to supplement the plant source. Previous work showed that high levels of amorpha-4,11-diene, an artemisinin precursor, can be made in Escherichia coli using a heterologous mevalonate pathway derived from yeast (Saccharomyces cerevisiae), though the reconstructed mevalonate pathway was limited at a particular enzymatic step. METHODOLOGY/ PRINCIPAL FINDINGS: By combining improvements in the heterologous mevalonate pathway with a superior fermentation process, commercially relevant titers were achieved in fed-batch fermentations. Yeast genes for HMG-CoA synthase and HMG-CoA reductase (the second and third enzymes in the pathway) were replaced with equivalent genes from Staphylococcus aureus, more than doubling production. Amorpha-4,11-diene titers were further increased by optimizing nitrogen delivery in the fermentation process. Successful cultivation of the improved strain under carbon and nitrogen restriction consistently yielded 90 g/L dry cell weight and an average titer of 27.4 g/L amorpha-4,11-diene. CONCLUSIONS/ SIGNIFICANCE: Production of >25 g/L amorpha-4,11-diene by fermentation followed by chemical conversion to artemisinin may allow for development of a process to provide an alternative source of artemisinin to be incorporated into ACTs

    Current-Induced Entanglement of Nuclear Spins in Quantum Dots

    Full text link
    We propose an entanglement mechanism of nuclear spins in quantum dots driven by the electric current accompanied by the spin flip. This situation is relevant to a leakage current in spin-blocked regions where electrons cannot be transported unless their spins are flipped. The current gradually increases the components of larger total spin of nuclei. This correlation among the nuclear spins markedly enhances the spin-flip rate of electrons and hence the leakage current. The enhancement of the current is observable when the residence time of electrons in the quantum dots is shorter than the dephasing time T*_2 of nuclear spins.Comment: 4 pages, 4 figure

    Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group.

    Get PDF
    Cancer immunotherapy has transformed the treatment of cancer. However, increasing use of immune-based therapies, including the widely used class of agents known as immune checkpoint inhibitors, has exposed a discrete group of immune-related adverse events (irAEs). Many of these are driven by the same immunologic mechanisms responsible for the drugs\u27 therapeutic effects, namely blockade of inhibitory mechanisms that suppress the immune system and protect body tissues from an unconstrained acute or chronic immune response. Skin, gut, endocrine, lung and musculoskeletal irAEs are relatively common, whereas cardiovascular, hematologic, renal, neurologic and ophthalmologic irAEs occur much less frequently. The majority of irAEs are mild to moderate in severity; however, serious and occasionally life-threatening irAEs are reported in the literature, and treatment-related deaths occur in up to 2% of patients, varying by ICI. Immunotherapy-related irAEs typically have a delayed onset and prolonged duration compared to adverse events from chemotherapy, and effective management depends on early recognition and prompt intervention with immune suppression and/or immunomodulatory strategies. There is an urgent need for multidisciplinary guidance reflecting broad-based perspectives on how to recognize, report and manage organ-specific toxicities until evidence-based data are available to inform clinical decision-making. The Society for Immunotherapy of Cancer (SITC) established a multidisciplinary Toxicity Management Working Group, which met for a full-day workshop to develop recommendations to standardize management of irAEs. Here we present their consensus recommendations on managing toxicities associated with immune checkpoint inhibitor therapy

    Demonstration of Universal Parametric Entangling Gates on a Multi-Qubit Lattice

    Get PDF
    We show that parametric coupling techniques can be used to generate selective entangling interactions for multi-qubit processors. By inducing coherent population exchange between adjacent qubits under frequency modulation, we implement a universal gateset for a linear array of four superconducting qubits. An average process fidelity of F=93%\mathcal{F}=93\% is estimated for three two-qubit gates via quantum process tomography. We establish the suitability of these techniques for computation by preparing a four-qubit maximally entangled state and comparing the estimated state fidelity against the expected performance of the individual entangling gates. In addition, we prepare an eight-qubit register in all possible bitstring permutations and monitor the fidelity of a two-qubit gate across one pair of these qubits. Across all such permutations, an average fidelity of F=91.6±2.6%\mathcal{F}=91.6\pm2.6\% is observed. These results thus offer a path to a scalable architecture with high selectivity and low crosstalk
    • …
    corecore