5 research outputs found

    PEPNet: Parameter and Embedding Personalized Network for Infusing with Personalized Prior Information

    Full text link
    With the increase of content pages and interactive buttons in online services such as online-shopping and video-watching websites, industrial-scale recommender systems face challenges in multi-domain and multi-task recommendations. The core of multi-task and multi-domain recommendation is to accurately capture user interests in multiple scenarios given multiple user behaviors. In this paper, we propose a plug-and-play \textit{\textbf{P}arameter and \textbf{E}mbedding \textbf{P}ersonalized \textbf{Net}work (\textbf{PEPNet})} for multi-domain and multi-task recommendation. PEPNet takes personalized prior information as input and dynamically scales the bottom-level Embedding and top-level DNN hidden units through gate mechanisms. \textit{Embedding Personalized Network (EPNet)} performs personalized selection on Embedding to fuse features with different importance for different users in multiple domains. \textit{Parameter Personalized Network (PPNet)} executes personalized modification on DNN parameters to balance targets with different sparsity for different users in multiple tasks. We have made a series of special engineering optimizations combining the Kuaishou training framework and the online deployment environment. By infusing personalized selection of Embedding and personalized modification of DNN parameters, PEPNet tailored to the interests of each individual obtains significant performance gains, with online improvements exceeding 1\% in multiple task metrics across multiple domains. We have deployed PEPNet in Kuaishou apps, serving over 300 million users every day.Comment: Accepted by KDD 202

    TWIN: TWo-stage Interest Network for Lifelong User Behavior Modeling in CTR Prediction at Kuaishou

    Full text link
    Life-long user behavior modeling, i.e., extracting a user's hidden interests from rich historical behaviors in months or even years, plays a central role in modern CTR prediction systems. Conventional algorithms mostly follow two cascading stages: a simple General Search Unit (GSU) for fast and coarse search over tens of thousands of long-term behaviors and an Exact Search Unit (ESU) for effective Target Attention (TA) over the small number of finalists from GSU. Although efficient, existing algorithms mostly suffer from a crucial limitation: the \textit{inconsistent} target-behavior relevance metrics between GSU and ESU. As a result, their GSU usually misses highly relevant behaviors but retrieves ones considered irrelevant by ESU. In such case, the TA in ESU, no matter how attention is allocated, mostly deviates from the real user interests and thus degrades the overall CTR prediction accuracy. To address such inconsistency, we propose \textbf{TWo-stage Interest Network (TWIN)}, where our Consistency-Preserved GSU (CP-GSU) adopts the identical target-behavior relevance metric as the TA in ESU, making the two stages twins. Specifically, to break TA's computational bottleneck and extend it from ESU to GSU, or namely from behavior length 10210^2 to length 104−10510^4-10^5, we build a novel attention mechanism by behavior feature splitting. For the video inherent features of a behavior, we calculate their linear projection by efficient pre-computing \& caching strategies. And for the user-item cross features, we compress each into a one-dimentional bias term in the attention score calculation to save the computational cost. The consistency between two stages, together with the effective TA-based relevance metric in CP-GSU, contributes to significant performance gain in CTR prediction.Comment: Accepted by KDD 202

    KuaiSAR: A Unified Search And Recommendation Dataset

    Full text link
    The confluence of Search and Recommendation services is a vital aspect of online content platforms like Kuaishou and TikTok. The integration of S&R modeling is a highly intuitive approach adopted by industry practitioners. However, there is a noticeable lack of research conducted in this area within the academia, primarily due to the absence of publicly available datasets. Consequently, a substantial gap has emerged between academia and industry regarding research endeavors in this field. To bridge this gap, we introduce the first large-scale, real-world dataset KuaiSAR of integrated Search And Recommendation behaviors collected from Kuaishou, a leading short-video app in China with over 300 million daily active users. Previous research in this field has predominantly employed publicly available datasets that are semi-synthetic and simulated, with artificially fabricated search behaviors. Distinct from previous datasets, KuaiSAR records genuine user behaviors, the occurrence of each interaction within either search or recommendation service, and the users' transitions between the two services. This work aids in joint modeling of S&R, and the utilization of search data for recommenders (and recommendation data for search engines). Additionally, due to the diverse feedback labels of user-video interactions, KuaiSAR also supports a wide range of other tasks, including intent recommendation, multi-task learning, and long sequential multi-behavior modeling etc. We believe this dataset will facilitate innovative research and enrich our understanding of S&R services integration in real-world applications.Comment: 4pages, 3 figure
    corecore