9 research outputs found

    Determination of the Content of Promoters in Magnetite and Wustite Phases in the Fused Iron Catalyst

    No full text
    Taking advantage of differences in etching rates of crystallographic phases, forming an oxidized form of the fused iron catalyst, a content of promoters in main phases, magnetite and wustite, was determined. A calcium oxide content in magnetite and wustite was 0.54 wt% and 3.59 wt%, respectively. Aluminum oxide was found in the magnetite phase, and its content was 4.5 wt%. The third promoter, potassium oxide, was almost completely located outside these phases. XRD and ICP-OES instrumental methods were used in the investigations

    Studies on the recrystalization of nanocrystalline metals

    No full text
    The influence of the promoters such as CaO, Al2O3 and K2O on the specific surface area of the nanocrystalline cobalt was determined. The recrystalization process of the nanocrystalline cobalt was determined and compared with the examinations conducted on the iron catalyst for ammonia synthesis. The triply promoted nanocrystalline obtained cobalt after the annealing process, has got greater specific surface area than the triply promoted iron

    The activity of fused-iron catalyst doped with lithium oxide for ammonia synthesis

    No full text
    The iron catalyst precursor promoted with Al2O3, CaO, and Li2O was obtained applying the fusing method. Lithium oxide forms two phases in this iron catalyst: a chemical compound with iron oxide (Li2Fe3O4) and a solid solution with magnetite. The catalyst promoted with lithium oxide was not fully reduced at 773 K, while the catalyst containing potassium was easily reducible at the same conditions. After reduction at 873 K the activity of the catalyst promoted with lithium oxide was 41% higher per surface than the activity of the catalyst promoted with potassium oxide. The concentration of free active sites on the surface of the catalyst containing lithium oxide after full reduction was greater than the concentration of free active sites on the surface of the catalyst promoted with potassium oxide

    Utilization of spent iron catalyst for ammonia synthesis

    No full text
    Several methods of the utilization of spent iron catalyst for ammonia synthesis have been presented. The formation of iron nitrides of different stoichiometry by direct nitriding in ammonia in the range of temperatures between 350°C and 450°C has been shown. The preparation methods of carbon nanotubes and nanofibers where iron catalyst catalyse the decomposition of hydrocarbons have been described. The formation of magnetite embedded in a carbon material by direct oxidation of carburized iron catalyst has been also presented
    corecore