723 research outputs found
A photometric study of the hot exoplanet WASP-19b
Context: When the planet transits its host star, it is possible to measure
the planetary radius and (with radial velocity data) the planet mass. For the
study of planetary atmospheres, it is essential to obtain transit and
occultation measurements at multiple wavelengths.
Aims: We aim to characterize the transiting hot Jupiter WASP-19b by deriving
accurate and precise planetary parameters from a dedicated observing campaign
of transits and occultations.
Methods: We have obtained a total of 14 transit lightcurves in the r'-Gunn,
IC, z'-Gunn and I+z' filters and 10 occultation lightcurves in z'-Gunn using
EulerCam on the Euler-Swiss telescope and TRAPPIST. We have also obtained one
lightcurve through the narrow-band NB1190 filter of HAWK-I on the VLT measuring
an occultation at 1.19 micron. We have performed a global MCMC analysis of all
new data together with some archive data in order to refine the planetary
parameters and measure the occultation depths in z'-band and at 1.19 micron.
Results: We measure a planetary radius of R_p = 1.376 (+/-0.046) R_j, a
planetary mass of M_p = 1.165 (+/-0.068) M_j, and find a very low eccentricity
of e = 0.0077 (+/-0.0068), compatible with a circular orbit. We have detected
the z'-band occultation at 3 sigma significance and measure it to be dF_z'= 352
(+/-116) ppm, more than a factor of 2 smaller than previously published. The
occultation at 1.19 micron is only marginally constrained at dF_1190 = 1711
(+/-745) ppm.
Conclusions: We have shown that the detection of occultations in the visible
is within reach even for 1m class telescopes if a considerable number of
individual events are observed. Our results suggest an oxygen-dominated
atmosphere of WASP-19b, making the planet an interesting test case for
oxygen-rich planets without temperature inversion.Comment: Published in Astronomy & Astrophysics. 11 pages, 11 figures, 4 table
Signs of strong Na and K absorption in the transmission spectrum of WASP-103b
Context: Transmission spectroscopy has become a prominent tool for
characterizing the atmospheric properties on close-in transiting planets.
Recent observations have revealed a remarkable diversity in exoplanet spectra,
which show absorption signatures of Na, K and , in some cases
partially or fully attenuated by atmospheric aerosols. Aerosols (clouds and
hazes) themselves have been detected in the transmission spectra of several
planets thanks to wavelength-dependent slopes caused by the particles'
scattering properties. Aims: We present an optical 550 - 960 nm transmission
spectrum of the extremely irradiated hot Jupiter WASP-103b, one of the hottest
(2500 K) and most massive (1.5 ) planets yet to be studied with this
technique. WASP-103b orbits its star at a separation of less than 1.2 times the
Roche limit and is predicted to be strongly tidally distorted. Methods: We have
used Gemini/GMOS to obtain multi-object spectroscopy hroughout three transits
of WASP-103b. We used relative spectrophotometry and bin sizes between 20 and 2
nm to infer the planet's transmission spectrum. Results: We find that WASP-103b
shows increased absorption in the cores of the alkali (Na, K) line features. We
do not confirm the presence of any strong scattering slope as previously
suggested, pointing towards a clear atmosphere for the highly irradiated,
massive exoplanet WASP-103b. We constrain the upper boundary of any potential
cloud deck to reside at pressure levels above 0.01 bar. This finding is in line
with previous studies on cloud occurrence on exoplanets which find that clouds
dominate the transmission spectra of cool, low surface gravity planets while
hot, high surface gravity planets are either cloud-free, or possess clouds
located below the altitudes probed by transmission spectra.Comment: Accepted for publication in A&
Study of Water/Methanol-Ionic Liquid Interactions Using Mid- Infrarred Spectroscopy and Chemometrics
Poste
Ground-based photometry of the 21-day Neptune HD106315c
Space-based transit surveys such as K2 and TESS allow the detection of small
transiting planets with orbital periods beyond 10 days. Few of these warm
Neptunes are currently known around stars bright enough to allow for detailed
follow-up observations dedicated to their atmospheric characterization. The
21-day period and 3.95 planet HD106315c has been discovered based on
the observation of two of its transits by K2. We have observed HD106315 using
the 1.2m Euler telescope equipped with the EulerCam camera on two instances to
confirm the transit using broad band photometry and refine the planetary
period. Based on two observed transits of HD106315c, we detect its 1 mmag
transit and obtain a precise measurement of the planetary ephemerids, which are
critical for planning further follow-up observations. We have used the attained
precision together with the predicted yield from the TESS mission to evaluate
the potential for ground-based confirmation of Neptune-sized planets found by
TESS. We find that 1-meter-class telescopes on the ground equipped with precise
photometers could substantially contribute to the follow-up of 162 TESS
candidates orbiting stars with magnitudes of . Out of these, 74
planets orbit stars with and 12 planets orbit , which
makes these candidates high-priority objects for atmospheric characterization
with high-end instrumentation.Comment: Published in A&A letters, 4 pages, 3 figure
Distinguishing the albedo of exoplanets from stellar activity
Light curves show the flux variation from the target star and its orbiting
planets as a function of time. In addition to the transit features created by
the planets, the flux also includes the reflected light component of each
planet, which depends on the planetary albedo. This signal is typically
referred to as phase curve and could be easily identified if there were no
additional noise. As well as instrumental noise, stellar activity, such as
spots, can create a modulation in the data, which may be very difficult to
distinguish from the planetary signal. We analyze the limitations imposed by
the stellar activity on the detection of the planetary albedo, considering the
limitations imposed by the predicted level of instrumental noise and the short
duration of the observations planned in the context of the CHEOPS mission. As
initial condition, we have assumed that each star is characterized by just one
orbiting planet. We built mock light curves that included a realistic stellar
activity pattern, the reflected light component of the planet and an
instrumental noise level, which we have chosen to be at the same level as
predicted for CHEOPS. We then fit these light curves to try to recover the
reflected light component, assuming the activity patterns can be modeled with a
Gaussian process.We estimate that at least one full stellar rotation is
necessary to obtain a reliable detection of the planetary albedo. This result
is independent of the level of noise, but it depends on the limitation of the
Gaussian process to describe the stellar activity when the light curve
time-span is shorter than the stellar rotation. Finally, in presence of typical
CHEOPS gaps in the simulations, we confirm that it is still possible to obtain
a reliable albedo.Comment: Accepted for publication in A&A, 14 pages, 12 figure
Young planets under extreme UV irradiation. I. Upper atmosphere modelling of the young exoplanet K2-33b
The K2-33 planetary system hosts one transiting ~5 R_E planet orbiting the
young M-type host star. The planet's mass is still unknown, with an estimated
upper limit of 5.4 M_J. The extreme youth of the system (<20 Myr) gives the
unprecedented opportunity to study the earliest phases of planetary evolution,
at a stage when the planet is exposed to an extremely high level of high-energy
radiation emitted by the host star. We perform a series of 1D hydrodynamic
simulations of the planet's upper atmosphere considering a range of possible
planetary masses, from 2 to 40 M_E, and equilibrium temperatures, from 850 to
1300 K, to account for internal heating as a result of contraction. We obtain
temperature profiles mostly controlled by the planet's mass, while the
equilibrium temperature has a secondary effect. For planetary masses below 7-10
M_E, the atmosphere is subject to extremely high escape rates, driven by the
planet's weak gravity and high thermal energy, which increase with decreasing
mass and/or increasing temperature. For higher masses, the escape is instead
driven by the absorption of the high-energy stellar radiation. A rough
comparison of the timescales for complete atmospheric escape and age of the
system indicates that the planet is more massive than 10 M_E.Comment: 11 pages, 7 figure
μLC-SERS system using silver-quantum dots substrate for the separation and determination of nucleic acid bases
III Encuentro sobre Nanociencia y Nanotecnología de Investigadores y Tecnólogos Andaluce
- A tool for multiband light curve modeling of planetary transits and stellar spots
Several studies have shown that stellar activity features, such as occulted
and non-occulted starspots, can affect the measurement of transit parameters
biasing studies of transit timing variations and transmission spectra. We
present , which we designed to model multiband transit
light curves showing starspot anomalies, inferring both transit and spot
parameters. The code follows a pixellation approach to model the star with its
corresponding limb darkening, spots, and transiting planet on a two dimensional
Cartesian coordinate grid. We combine with an MCMC
framework to study and derive exoplanet transmission spectra, which provides
statistically robust values for the physical properties and uncertainties of a
transiting star-planet system. We validate 's performance
by analyzing eleven synthetic light curves of four different star-planet
systems and 20 transit light curves of the well-studied WASP-41b system. We
also investigate the impact of starspots on transit parameters and derive
wavelength dependent transit depth values for WASP-41b covering a range of
6200-9200 , indicating a flat transmission spectrum.Comment: 17 pages, 22 figures; accepted for publication in Astronomy &
Astrophysic
- …