13 research outputs found

    Critical Thinking in Nursing Education: Literature Review

    Get PDF
    The need for critical thinking in nursing has been accentuated in response to the rapidly changing health care environment. Nurses must think critically to provide effective care whilst coping with the expansion in role associated with the complexities of current health care systems. This literature review will present a history of inquiry into critical thinking and research to support the conclusion that critical thinking is necessary not only in the clinical practice setting, but also as an integral component of nursing education programs to promote the development of nurses’ critical thinking abilities. The aims of this paper are: (a) to review the literature on critical thinking; (b) to examine the dimensions of critical thinking; (c) to investigate the various critical thinking strategies for their appropriateness to enhance critical thinking in nurses, and; (d) to examine issues relating to evaluation of critical thinking skills in nursing.</ul

    Zebrafish brd2a and brd2b are paralogous members of the bromodomain-ET (BET) family of transcriptional coregulators that show structural and expression divergence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Brd2 belongs to the bromodomain-extraterminal domain (BET) family of transcriptional co-regulators, and functions as a pivotal histone-directed recruitment scaffold in chromatin modification complexes affecting signal-dependent transcription. Brd2 facilitates expression of genes promoting proliferation and is implicated in apoptosis and in egg maturation and meiotic competence in mammals; it is also a susceptibility gene for juvenile myoclonic epilepsy (JME) in humans. The <it>brd2 </it>ortholog in <it>Drosophila </it>is a maternal effect, embryonic lethal gene that regulates several homeotic loci, including Ultrabithorax. Despite its importance, there are few systematic studies of <it>Brd2 </it>developmental expression in any organism. To help elucidate both conserved and novel gene functions, we cloned and characterized expression of <it>brd2 </it>cDNAs in zebrafish, a vertebrate system useful for genetic analysis of development and disease, and for study of the evolution of gene families and functional diversity in chordates.</p> <p>Results</p> <p>We identify cDNAs representing two paralogous <it>brd2 </it>loci in zebrafish, <it>brd2a </it>on chromosome 19 and <it>brd2b </it>on chromosome 16. By sequence similarity, syntenic and phylogenetic analyses, we present evidence for structural divergence of <it>brd2 </it>after gene duplication in fishes. <it>brd2 </it>paralogs show potential for modular domain combinations, and exhibit distinct RNA expression patterns throughout development. RNA <it>in situ </it>hybridizations in oocytes and embryos implicate <it>brd2a </it>and <it>brd2b </it>as maternal effect genes involved in egg polarity and egg to embryo transition, and as zygotic genes important for development of the vertebrate nervous system and for morphogenesis and differentiation of the digestive tract. Patterns of <it>brd2 </it>developmental expression in zebrafish are consistent with its proposed role in <it>Homeobox </it>gene regulation.</p> <p>Conclusion</p> <p>Expression profiles of zebrafish <it>brd2 </it>paralogs support a role in vertebrate developmental patterning and morphogenesis. Our study uncovers both maternal and zygotic contributions of <it>brd2</it>, the analysis of which may provide insight into the earliest events in vertebrate development, and the etiology of some forms of epilepsy, for which zebrafish is an important model. Knockdowns of <it>brd2 </it>paralogs in zebrafish may now test proposed function and interaction with homeotic loci in vertebrates, and help reveal the extent to which functional novelty or partitioning has occurred after gene duplication.</p
    corecore