459 research outputs found

    Absence of Edge Localized Moments in the Doped Spin-Peierls System CuGe1x_{1-x}Six_{x}O3_3

    Full text link
    We report the observation of nuclear quadrupole resonance (NQR) of Cu from the sites near the doping center in the spin-Peierls system CuGe1x_{1-x}Six_{x}O3_3. The signal appears as the satellites in the Cu NQR spectrum, and has a suppressed nuclear spin-lattice relaxation rate indicative of a singlet correlation rather than an enhanced magnetic correlation near the doping center. Signal loss of Cu nuclei with no neighboring Si is also observed. We conclude from these observations that the doping-induced moments are not in the vicinity of the doping center but rather away from it.Comment: 4 pages, 4 figures, accepted for publication in Phys. Rev. Let

    Gravitational lensing: a unique probe of dark matter and dark energy

    Get PDF
    I review the development of gravitational lensing as a powerful tool of the observational cosmologist. After the historic eclipse expedition organized by Arthur Eddington and Frank Dyson, the subject lay observationally dormant for 60 years. However, subsequent progress has been astonishingly rapid, especially in the past decade, so that gravitational lensing now holds the key to unravelling the two most profound mysteries of our Universe—the nature and distribution of dark matter, and the origin of the puzzling cosmic acceleration first identified in the late 1990s. In this non-specialist review, I focus on the unusual history and achievements of gravitational lensing and its future observational prospects

    Universal correlations of trapped one-dimensional impenetrable bosons

    Full text link
    We calculate the asymptotic behaviour of the one body density matrix of one-dimensional impenetrable bosons in finite size geometries. Our approach is based on a modification of the Replica Method from the theory of disordered systems. We obtain explicit expressions for oscillating terms, similar to fermionic Friedel oscillations. These terms are universal and originate from the strong short-range correlations between bosons in one dimension.Comment: 18 pages, 3 figures. Published versio

    Finite one dimensional impenetrable Bose systems: Occupation numbers

    Full text link
    Bosons in the form of ultra cold alkali atoms can be confined to a one dimensional (1d) domain by the use of harmonic traps. This motivates the study of the ground state occupations λi\lambda_i of effective single particle states ϕi\phi_i, in the theoretical 1d impenetrable Bose gas. Both the system on a circle and the harmonically trapped system are considered. The λi\lambda_i and ϕi\phi_i are the eigenvalues and eigenfunctions respectively of the one body density matrix. We present a detailed numerical and analytic study of this problem. Our main results are the explicit scaled forms of the density matrices, from which it is deduced that for fixed ii the occupations λi\lambda_i are asymptotically proportional to N\sqrt{N} in both the circular and harmonically trapped cases.Comment: 22 pages, 8 figures (.eps), uses REVTeX

    Increasing subsequences and the hard-to-soft edge transition in matrix ensembles

    Get PDF
    Our interest is in the cumulative probabilities Pr(L(t) \le l) for the maximum length of increasing subsequences in Poissonized ensembles of random permutations, random fixed point free involutions and reversed random fixed point free involutions. It is shown that these probabilities are equal to the hard edge gap probability for matrix ensembles with unitary, orthogonal and symplectic symmetry respectively. The gap probabilities can be written as a sum over correlations for certain determinantal point processes. From these expressions a proof can be given that the limiting form of Pr(L(t) \le l) in the three cases is equal to the soft edge gap probability for matrix ensembles with unitary, orthogonal and symplectic symmetry respectively, thereby reclaiming theorems due to Baik-Deift-Johansson and Baik-Rains.Comment: LaTeX, 19 page

    Near-Equilibrium Dynamics of Crystalline Interfaces with Long-Range Interactions in 1+1 Dimensional Systems

    Full text link
    The dynamics of a one-dimensional crystalline interface model with long-range interactions is investigated. In the absence of randomness, the linear response mobility decreases to zero when the temperature approaches the roughening transition from above, in contrast to a finite jump at the critical point in the Kosterlitz-Thouless (KT) transition. In the presence of substrate disorder, there exists a phase transition into a low-temperature pinning phase with a continuously varying dynamic exponent z>1z>1. The expressions for the non-linear response mobility of a crystalline interface in both cases are also derived.Comment: 14 Pages, Revtex3.0, accepted to be published in Phys. Rev. E Rapid Communicatio

    Integral operators with the generalized sine-kernel on the real axis

    Full text link
    The asymptotic properties of integral operators with the generalized sine kernel acting on the real axis are studied. The formulas for the resolvent and the Fredholm determinant are obtained in the large x limit. Some applications of the results obtained to the theory of integrable models are considered.Comment: 17 pages, 2 Postscript figures, submitted to Theor. Math. Phy

    Many-body solitons in a one-dimensional condensate of hard core bosons

    Full text link
    A mapping theorem leading to exact many-body dynamics of impenetrable bosons in one dimension reveals dark and gray soliton-like structures in a toroidal trap which is phase-imprinted. On long time scales revivals appear that are beyond the usual mean-field theory

    Talbot Oscillations and Periodic Focusing in a One-Dimensional Condensate

    Full text link
    An exact theory for the density of a one-dimensional Bose-Einstein condensate with hard core particle interactions is developed in second quantization and applied to the scattering of the condensate by a spatially periodic impulse potential. The boson problem is mapped onto a system of free fermions obeying the Pauli exclusion principle to facilitate the calculation. The density exhibits a spatial focusing of the probability density as well as a periodic self-imaging in time, or Talbot effect. Furthermore, the transition from single particle to many body effects can be measured by observing the decay of the modulated condensate density pattern in time. The connection of these results to classical and atom optical phase gratings is made explicit

    Remarks on Shannon's Statistical Inference and the Second Law in Quantum Statistical Mechanics

    Full text link
    We comment on a formulation of quantum statistical mechanics, which incorporates the statistical inference of Shannon. Our basic idea is to distinguish the dynamical entropy of von Neumann, H=kTrρ^lnρ^H = -k Tr \hat{\rho}\ln\hat{\rho}, in terms of the density matrix ρ^(t)\hat{\rho}(t), and the statistical amount of uncertainty of Shannon, S=knpnlnpnS= -k \sum_{n}p_{n}\ln p_{n}, with pn=p_{n}= in the representation where the total energy and particle numbers are diagonal. These quantities satisfy the inequality SHS\geq H. We propose to interprete Shannon's statistical inference as specifying the {\em initial conditions} of the system in terms of pnp_{n}. A definition of macroscopic observables which are characterized by intrinsic time scales is given, and a quantum mechanical condition on the system, which ensures equilibrium, is discussed on the basis of time averaging. An interesting analogy of the change of entroy with the running coupling in renormalization group is noted. A salient feature of our approach is that the distinction between statistical aspects and dynamical aspects of quantum statistical mechanics is very transparent.Comment: 16 pages. Minor refinement in the statements in the previous version. This version has been published in Journal of Phys. Soc. Jpn. 71 (2002) 6
    corecore