13 research outputs found
N-body simulations of gravitational dynamics
We describe the astrophysical and numerical basis of N-body simulations, both
of collisional stellar systems (dense star clusters and galactic centres) and
collisionless stellar dynamics (galaxies and large-scale structure). We explain
and discuss the state-of-the-art algorithms used for these quite different
regimes, attempt to give a fair critique, and point out possible directions of
future improvement and development. We briefly touch upon the history of N-body
simulations and their most important results.Comment: invited review (28 pages), to appear in European Physics Journal Plu
Spanning forests and the q-state Potts model in the limit q \to 0
We study the q-state Potts model with nearest-neighbor coupling v=e^{\beta
J}-1 in the limit q,v \to 0 with the ratio w = v/q held fixed. Combinatorially,
this limit gives rise to the generating polynomial of spanning forests;
physically, it provides information about the Potts-model phase diagram in the
neighborhood of (q,v) = (0,0). We have studied this model on the square and
triangular lattices, using a transfer-matrix approach at both real and complex
values of w. For both lattices, we have computed the symbolic transfer matrices
for cylindrical strips of widths 2 \le L \le 10, as well as the limiting curves
of partition-function zeros in the complex w-plane. For real w, we find two
distinct phases separated by a transition point w=w_0, where w_0 = -1/4 (resp.
w_0 = -0.1753 \pm 0.0002) for the square (resp. triangular) lattice. For w >
w_0 we find a non-critical disordered phase, while for w < w_0 our results are
compatible with a massless Berker-Kadanoff phase with conformal charge c = -2
and leading thermal scaling dimension x_{T,1} = 2 (marginal operator). At w =
w_0 we find a "first-order critical point": the first derivative of the free
energy is discontinuous at w_0, while the correlation length diverges as w
\downarrow w_0 (and is infinite at w = w_0). The critical behavior at w = w_0
seems to be the same for both lattices and it differs from that of the
Berker-Kadanoff phase: our results suggest that the conformal charge is c = -1,
the leading thermal scaling dimension is x_{T,1} = 0, and the critical
exponents are \nu = 1/d = 1/2 and \alpha = 1.Comment: 131 pages (LaTeX2e). Includes tex file, three sty files, and 65
Postscript figures. Also included are Mathematica files forests_sq_2-9P.m and
forests_tri_2-9P.m. Final journal versio