7 research outputs found

    Bestimmung der Inulinclearance

    No full text

    The role of ASTN2 variants in childhood and adult ADHD, comorbid disorders and associated personality traits

    Full text link
    Previous linkage and genome wide association (GWA) studies in ADHD indicated astrotactin 2 (ASTN2) as a candidate gene for attention-deficit/hyperactivity disorder (ADHD). ASTN2 plays a key role in glial-guided neuronal migration. To investigate whether common variants in ASTN2 contribute to ADHD disorder risk, we tested 63 SNPs spanning ASTN2 for association with ADHD and specific comorbid disorders in two samples: 171 families of children with ADHD and their parents (N = 592), and an adult sample comprising 604 adult ADHD cases and 974 controls. The C-allele of rs12376789 in ASTN2 nominally increased the risk for ADHD in the trio sample (p = 0.025). This was not observed in the adult case-control sample alone, but retained in the combined sample (nominal p = 0.030). Several other SNPs showed nominally significant association with comorbid disorders, especially anxiety disorder, in the childhood and adult ADHD samples. Some ASTN2 variants were nominally associated with personality traits in the adult ADHD sample and overlapped with risk alleles for comorbid disorders in childhood. None of the findings survived correction for multiple testing, thus, results do not support a major role of common variants in ASTN2 in the pathogenesis of ADHD, its comorbid disorders or ADHD associated personality traits

    A preliminary study on methylphenidate-regulated gene expression in lymphoblastoid cells of ADHD patients

    No full text
    OBJECTIVES: Methylphenidate (MPH) is a commonly used stimulant medication for treating attention-deficit/hyperactivity disorder (ADHD). Besides inhibiting monoamine reuptake there is evidence that MPH also influences gene expression directly. METHODS: We investigated the impact of MPH treatment on gene expression levels of lymphoblastoid cells derived from adult ADHD patients and healthy controls by hypothesis-free, genome-wide microarray analysis. Significant findings were subsequently confirmed by quantitative Real-Time PCR (qRT PCR) analysis. RESULTS: The microarray analysis from pooled samples after correction for multiple testing revealed 138 genes to be marginally significantly regulated due to MPH treatment, and one gene due to diagnosis. By qRT PCR we could confirm that GUCY1B3 expression was differential due to diagnosis. We verified chronic MPH treatment effects on the expression of ATXN1, HEY1, MAP3K8 and GLUT3 in controls as well as acute treatment effects on the expression of NAV2 and ATXN1 specifically in ADHD patients. CONCLUSIONS: Our preliminary results demonstrate MPH treatment differences in ADHD patients and healthy controls in a peripheral primary cell model. Our results need to be replicated in larger samples and also using patient-derived neuronal cell models to validate the contribution of those genes to the pathophysiology of ADHD and mode of action of MPH

    KCNIP4 as a candidate gene for personality disorders and adult ADHD

    No full text
    Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder in children with striking persistence into adulthood and a high co-morbidity with other psychiatric disorders, including personality disorders (PD). The 4p15.31 region was shown to be associated with ADHD in several genome wide association studies (GWAS). In the present study we also report association of the 4p15.31 locus with Cluster B and Cluster C PD as identified by a pooled genome-wide association study in 400 individuals suffering from PD. The gene coding for the Kv channel-interacting protein 4 (KCNIP4) is located in this region. KCNIP4 is an interaction partner of presenilin and plays a role in a negative feedback loop in the Wnt/?-catenin pathway. Thus, we reasoned it to be a promising candidate gene for ADHD as well as for PD. To clarify the role of KCNIP4 in those disorders, we conducted candidate gene based association studies in 594 patients suffering from adult ADHD and 630 PD patients as compared to 974 healthy control individuals. In the adult ADHD sample, six single markers and one haplotype block revealed to be associated with disease (p values from 0.0079 to 0.049). Seven markers within the KCNIP4 gene showed an association with PD (p values from 0.0043 to 0.0437). The results of these studies suggest a role of KCNIP4 in the etiology of ADHD, PD and other co-morbid disorders. Elsevier B.V. and ECNP. All rights reserved

    Cross-disorder analysis of bipolar risk genes: further evidence of DGKH as a risk gene for bipolar disorder, but also unipolar depression and adult ADHD

    No full text
    Recently, several genome-wide association studies (GWAS) on bipolar disorder (BPD) suggested novel risk genes. However, only few of them were followed up and further, the specificity of these genes is even more elusive. To address these issues, we genotyped SNPs in ANK3, CACNA1C, CMTM8, DGKH, EGFR, and NPAS3, which were significantly associated with BPD in previous GWAS, in a sample of 380 BPD patients. Replicated SNPs were then followed up in patients suffering from unipolar depression (UPD; n=387) or adult attention-deficit/hyperactivity disorder (aADHD; n=535). While we could not confirm an association of ANK3, CACNA1C, and EGFR with BPD, 10 SNPs in DGKH, CMTM8, and NPAS3 were nominally associated with disease, with two DGKH markers surviving correction for multiple testing. When these were followed up in UPD and aADHD, seven DGKH SNPs were also associated with UPD, while one SNP each in NPAS3 and CMTM8 and four in DGKH were linked to aADHD. Furthermore, a DGKH haplotype consisting of rs994856/rs9525580/rs9525584 GAT was associated with all disorders tested, while the complementary AGC haplotype was protective. The corresponding haploblock spans a 27-kb region covering exons coding for amino acids 65–243, and thus might include functional variants yet to be identified. We demonstrate an association of DGKH with BPD, UPD, and aADHD by applying a two-stage design. These disorders share the feature of mood instability, so that this phenotype might be associated with genetic variation in DGKH.Heike Weber, Sarah Kittel-Schneider, Alexandra Gessner, Katharina Domschke, Maria Neuner, Christian P Jacob, Henriette N Buttenschon, Andrea Boreatti-Hümmer, Julia Volkert, Sabine Herterich, Bernhard T Baune, Silke Gross-Lesch, Juliane Kopf, Susanne Kreiker, Thuy Trang Nguyen, Lena Weissflog, Volker Arolt, Ole Mors, Jürgen Deckert, Klaus-Peter Lesch and Andreas Rei
    corecore