718 research outputs found

    3D-reconstruction of gamma-ray showers with a stereoscopic system

    No full text
    We report on a new 3D-reconstruction of Îł\gamma-ray showers which takes full advantage of the assets of a stereoscopic system of atmospheric Cherenkov telescopes and of the fine-grain imaging. The rich information collected by the cameras allows us to discriminate Îł\gamma-ray showers and hadronic showers on the basis of two simple properties of electromagnetic showers : their rotational symmetry with respect to the axis and their relatively small lateral spread. The performance of the method is presented in terms of Îł\gamma-ray efficiency, angular resolution and spectral resolution

    Constraints on cosmic-ray efficiency in the supernova remnant RCW 86 using multi-wavelength observations

    Full text link
    Several young supernova remnants (SNRs) have recently been detected in the high-energy and very-high-energy gamma-ray domains. As exemplified by RX J1713.7-3946, the nature of this emission has been hotly debated, and direct evidence for the efficient acceleration of cosmic-ray protons at the SNR shocks still remains elusive. We analyzed more than 40 months of data acquired by the Large Area Telescope (LAT) on-board the Fermi Gamma-Ray Space Telescope in the HE domain, and gathered all of the relevant multi-wavelength (from radio to VHE gamma-rays) information about the broadband nonthermal emission from RCW 86. For this purpose, we re-analyzed the archival X-ray data from the ASCA/Gas Imaging Spectrometer (GIS), the XMM-Newton/EPIC-MOS, and the RXTE/Proportional Counter Array (PCA). Beyond the expected Galactic diffuse background, no significant gamma-ray emission in the direction of RCW 86 is detected in any of the 0.1-1, 1-10 and 10-100 GeV Fermi-LAT maps. In the hadronic scenario, the derived HE upper limits together with the HESS measurements in the VHE domain can only be accommodated by a spectral index Gamma <= 1.8, i.e. a value in-between the standard (test-particle) index and the asymptotic limit of theoretical particle spectra in the case of strongly modified shocks. The interpretation of the gamma-ray emission by inverse Compton scattering of high energy electrons reproduces the multi-wavelength data using a reasonable value for the average magnetic field of 15-25 muG. For these two scenarios, we assessed the level of acceleration efficiency. We discuss these results in the light of existing estimates of the magnetic field strength, the effective density and the acceleration efficiency in RCW 86.Comment: Accepted for publication in A&A; 10 pages and 4 figure

    Fermi Detection of the Pulsar Wind Nebula HESS J1640-465

    Full text link
    We present observations of HESS J1640-465 with the Fermi-LAT. The source is detected with high confidence as an emitter of high-energy gamma-rays. The spectrum lacks any evidence for the characteristic cutoff associated with emission from pulsars, indicating that the emission arises primarily from the pulsar wind nebula. Broadband modeling implies an evolved nebula with a low magnetic field resulting in a high gamma-ray to X-ray flux ratio. The Fermi emission exceeds predictions of the broadband model, and has a steeper spectrum, possibly resulting from a distinct excess of low energy electrons similar to what is inferred for both the Vela X and Crab pulsar wind nebulae.Comment: 6 pages, 5 figures, accepted for publication in Ap

    Detecting stable massive neutral particles through particle lensing

    Full text link
    Stable massive neutral particles emitted by astrophysical sources undergo deflection under the gravitational potential of our own galaxy. The deflection angle depends on the particle velocity and therefore non-relativistic particles will be deflected more than relativistic ones. If these particles can be detected through neutrino telescopes, cosmic ray detectors or directional dark matter detectors, their arrival directions would appear aligned on the sky along the source-lens direction. On top of this deflection, the arrival direction of non-relativistic particles is displaced with respect to the relativistic counterpart also due to the relative motion of the source with respect to the observer; this induces an alignment of detections along the sky projection of the source trajectory. The final alignment will be given by a combination of the directions induced by lensing and source proper motion. We derive the deflection-velocity relation for the Milky Way halo and suggest that searching for alignments on detection maps of particle telescopes could be a way to find new particles or new astrophysical phenomena.Comment: 17 pages, 7 figures. Accepted by PR

    Selection and 3D-Reconstruction of Gamma-Ray-induced Air Showers with a Stereoscopic System of Atmospheric Cherenkov Telescopes

    Full text link
    A simple 3D-reconstruction method for gamma-ray induced air showers is presented, which takes full advantage of the assets of a system of Atmospheric Cherenkov Telescopes combining stereoscopy and fine-grain imaging like the High Energy Stereoscopic System (H.E.S.S.). The rich information collected by the cameras allows to select electromagnetic showers on the basis of their rotational symmetry with respect to the incident direction, as well as of their relatively small lateral spread. In the framework of a 3D-model of the shower, its main parameters -- incident direction, shower core position on the ground, slant depth of shower maximum, average lateral spread of Cherenkov photon origins (or ``photosphere 3D-width'') and primary energy -- are fitted to the pixel contents of the different images. For gamma-ray showers, the photosphere 3D-width is found to scale with the slant depth of shower maximum, an effect related to the variation of the Cherenkov threshold with the altitude; this property allows to define a dimensionless quantity omega (the ``reduced 3D-width''), which turns out to be an efficient and robust variable to discriminate gamma-rays from primary hadrons. In addition, the omega distribution varies only slowly with the gamma-ray energy and is practically independent of the zenith angle. The performance of the method as applied to H.E.S.S. is presented. Depending on the requirements imposed to reconstructed showers, the angular resolution at zenith varies from 0.04 to 0.1 degrees and the spectral resolution in the same conditions from 15% to 20%.Comment: 32 pages including 38 figures. Accepted by AstroParticle Physic
    • …
    corecore