19 research outputs found

    New Insights into White-Light Flare Emission from Radiative-Hydrodynamic Modeling of a Chromospheric Condensation

    Full text link
    (abridged) The heating mechanism at high densities during M dwarf flares is poorly understood. Spectra of M dwarf flares in the optical and near-ultraviolet wavelength regimes have revealed three continuum components during the impulsive phase: 1) an energetically dominant blackbody component with a color temperature of T ∌\sim 10,000 K in the blue-optical, 2) a smaller amount of Balmer continuum emission in the near-ultraviolet at lambda << 3646 Angstroms and 3) an apparent pseudo-continuum of blended high-order Balmer lines. These properties are not reproduced by models that employ a typical "solar-type" flare heating level in nonthermal electrons, and therefore our understanding of these spectra is limited to a phenomenological interpretation. We present a new 1D radiative-hydrodynamic model of an M dwarf flare from precipitating nonthermal electrons with a large energy flux of 101310^{13} erg cm−2^{-2} s−1^{-1}. The simulation produces bright continuum emission from a dense, hot chromospheric condensation. For the first time, the observed color temperature and Balmer jump ratio are produced self-consistently in a radiative-hydrodynamic flare model. We find that a T ∌\sim 10,000 K blackbody-like continuum component and a small Balmer jump ratio result from optically thick Balmer and Paschen recombination radiation, and thus the properties of the flux spectrum are caused by blue light escaping over a larger physical depth range compared to red and near-ultraviolet light. To model the near-ultraviolet pseudo-continuum previously attributed to overlapping Balmer lines, we include the extra Balmer continuum opacity from Landau-Zener transitions that result from merged, high order energy levels of hydrogen in a dense, partially ionized atmosphere. This reveals a new diagnostic of ambient charge density in the densest regions of the atmosphere that are heated during dMe and solar flares.Comment: 50 pages, 2 tables, 13 figures. Accepted for publication in the Solar Physics Topical Issue, "Solar and Stellar Flares". Version 2 (June 22, 2015): updated to include comments by Guest Editor. The final publication is available at Springer via http://dx.doi.org/10.1007/s11207-015-0708-

    Single-molecule biophysics: at the interface of biology, physics and chemistry

    No full text
    Single-molecule methods have matured into powerful and popular tools to probe the complex behaviour of biological molecules, due to their unique abilities to probe molecular structure, dynamics and function, unhindered by the averaging inherent in ensemble experiments. This review presents an overview of the burgeoning field of single-molecule biophysics, discussing key highlights and selected examples from its genesis to our projections for its future. Following brief introductions to a few popular single-molecule fluorescence and manipulation methods, we discuss novel insights gained from single-molecule studies in key biological areas ranging from biological folding to experiments performed in vivo

    Designing for dialogue in place of teacher talk and student silence

    No full text
    Abstract Research in classrooms reveals that the institution of school is not an empty slate, but rather is characterized by peculiar patterns of interaction which tend to be short exchanges directed by the teacher. Language teachers who wish children to learn language by participating in extended meaningful conversation, then, must consciously resist institutionally defined ‘teacher talk’. In this paper we examine a case of extended conversation in a dual-language kindergarten for clues as to how the teacher and children were able to negotiate alternative ways of engaging each other in a conversation. The purpose of the paper is to reveal both challenges and approaches for teachers to design real-life conversations in a traditional school where rigid ‘teacher talk ’ dominates the classroom discourse. Key Words classroom discourse, dialogue, dual language, intersubjectivity, teacher tal

    Aging Behavior of High-Strength Al Alloy 2618 Produced by Selective Laser Melting

    No full text
    High Si-bearing Al alloys are commonly used in additive manufacturing, but they have moderate mechanical properties. New high-strength compositions are necessary to spread the use of additively manufactured Al parts for heavy-duty structural applications. This work focuses on the microstructure, mechanical behavior, and aging response of an Al alloy 2618 processed by selective laser melting. Calorimetric analysis, electron microscopy, and compression tests were performed in order to correlate the mechanical properties with the peculiar microstructure induced by laser melting and thermal treatment

    Design of Wear-Resistant Austenitic Steels for Selective Laser Melting

    No full text
    Type 316L stainless steel feedstock powder was modified by alloying with powders containing carbide/boride-forming elements to create improved wear-resistant austenitic alloys that can be readily processed by Selective Laser Melting. Fe-based alloys with high C, B, V, and Nb contents were thus produced, resulting in a microstructure that consisted of austenitic grains and a significant amount of hard carbides and borides. Heat treatments were performed to modify the carbide distribution and morphology. Optimal hard-phase spheroidization was achieved by annealing the proposed alloys at 1150 °C for 1 hour followed by water quenching. The total increase in hardness of samples containing 20 pct of C/B-rich alloy powder was of 82.7 pct while the wear resistance could be increased by a factor of 6
    corecore