1,022 research outputs found
Hierarchical Bin Buffering: Online Local Moments for Dynamic External Memory Arrays
Local moments are used for local regression, to compute statistical measures
such as sums, averages, and standard deviations, and to approximate probability
distributions. We consider the case where the data source is a very large I/O
array of size n and we want to compute the first N local moments, for some
constant N. Without precomputation, this requires O(n) time. We develop a
sequence of algorithms of increasing sophistication that use precomputation and
additional buffer space to speed up queries. The simpler algorithms partition
the I/O array into consecutive ranges called bins, and they are applicable not
only to local-moment queries, but also to algebraic queries (MAX, AVERAGE, SUM,
etc.). With N buffers of size sqrt{n}, time complexity drops to O(sqrt n). A
more sophisticated approach uses hierarchical buffering and has a logarithmic
time complexity (O(b log_b n)), when using N hierarchical buffers of size n/b.
Using Overlapped Bin Buffering, we show that only a single buffer is needed, as
with wavelet-based algorithms, but using much less storage. Applications exist
in multidimensional and statistical databases over massive data sets,
interactive image processing, and visualization
Antimicrobial activity of biogenically produced spherical Se-nanomaterials embedded in organic material against Pseudomonas aeruginosa and Staphylococcus aureus strains on hydroxyapatite-coated surfaces
In an effort to prevent the formation of pathogenic biofilms on hydroxyapatite (HA)-based clinical devices and surfaces, we present a study evaluating the antimicrobial efficacy of Spherical biogenic Se-Nanostructures Embedded in Organic material (Bio Se-NEMO-S) produced by Bacillus mycoides SelTE01 in comparison with two different chemical selenium nanoparticle (SeNP) classes. These nanomaterials have been studied as potential antimicrobials for eradication of established HA-grown biofilms, for preventing biofilm formation on HA-coated surfaces and for inhibition of planktonic cell growth of Pseudomonas aeruginosa NCTC 12934 and Staphylococcus aureus ATCC 25923. Bio Se-NEMO resulted more efficacious than those chemically produced in all tested scenarios. Bio Se-NEMO produced by B. mycoides SelTE01 after 6 or 24 h of Na 2 SeO 3 exposure show the same effective antibiofilm activity towards both P. aeruginosa and S. aureus strains at 0.078 mg ml −1 (Bio Se-NEMO 6 ) and 0.3125 mg ml −1 (Bio Se-NEMO 24 ). Meanwhile, chemically synthesized SeNPs at the highest tested concentration (2.5 mg ml −1 ) have moderate antimicrobial activity. The confocal laser scanning micrographs demonstrate that the majority of the P. aeruginosa and S. aureus cells exposed to biogenic SeNPs within the biofilm are killed or eradicated. Bio Se-NEMO therefore displayed good antimicrobial activity towards HA-grown biofilms and planktonic cells, becoming possible candidates as new antimicrobials
Centralizers of maximal regular subgroups in simple Lie groups and relative congruence classes of representations
In the paper we present a new, uniform and comprehensive description of
centralizers of the maximal regular subgroups in compact simple Lie groups of
all types and ranks. The centralizer is either a direct product of finite
cyclic groups, a continuous group of rank 1, or a product, not necessarily
direct, of a continuous group of rank 1 with a finite cyclic group. Explicit
formulas for the action of such centralizers on irreducible representations of
the simple Lie algebras are given.Comment: 27 page
Cell-selective Knockout and 3D Confocal Image Analysis Reveals Separate Roles for Astrocyte- and Endothelial-derived CCL2 in Neuroinflammation
Background
Expression of chemokine CCL2 in the normal central nervous system (CNS) is nearly undetectable, but is significantly upregulated and drives neuroinflammation during experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis which is considered a contributing factor in the human disease. As astrocytes and brain microvascular endothelial cells (BMEC) forming the blood–brain barrier (BBB) are sources of CCL2 in EAE and other neuroinflammatory conditions, it is unclear if one or both CCL2 pools are critical to disease and by what mechanism(s). Methods
Mice with selective CCL2 gene knockout (KO) in astrocytes (Astro KO) or endothelial cells (Endo KO) were used to evaluate the respective contributions of these sources to neuroinflammation, i.e., clinical disease progression, BBB damage, and parenchymal leukocyte invasion in a myelin oligodendrocyte glycoprotein peptide (MOG35-55)-induced EAE model. High-resolution 3-dimensional (3D) immunofluorescence confocal microscopy and colloidal gold immuno-electron microscopy were employed to confirm sites of CCL2 expression, and 3D immunofluorescence confocal microscopy utilized to assess inflammatory responses along the CNS microvasculature. Results
Cell-selective loss of CCL2 immunoreactivity was demonstrated in the respective KO mice. Compared to wild-type (WT) mice, Astro KO mice showed reduced EAE severity but similar onset, while Endo KO mice displayed near normal severity but significantly delayed onset. Neither of the KO mice showed deficits in T cell proliferation, or IL-17 and IFN-γ production, following MOG35-55 exposure in vitro, or altered MOG-major histocompatibility complex class II tetramer binding. 3D confocal imaging further revealed distinct actions of the two CCL2 pools in the CNS. Astro KOs lacked the CNS leukocyte penetration and disrupted immunostaining of CLN-5 at the BBB seen during early EAE in WT mice, while Endo KOs uniquely displayed leukocytes stalled in the microvascular lumen. Conclusions
These results point to astrocyte and endothelial pools of CCL2 each regulating different stages of neuroinflammation in EAE, and carry implications for drug delivery in neuroinflammatory disease
Congenital anterolateral tibial bowing and polydactyly: a case report
Congenital anterolateral bowing of the tibia is a rare deformity that may lead to pseudarthrosis and risk of fracture. This is commonly associated with neurofibromatosis type 1. In this report, we describe a 15-month old male with congenital anterolateral bowing of the right tibia and associated hallux duplication. This is a distinct entity with a generally favourable prognosis that should not be confused with other conditions such as neurofibromatosis type 1. Previously published cases are reviewed
Monthly Incidence Rates of Abusive Encounters for Canadian Family Physicians by Patients and Their Families
Objective. The goal of this study was to examine the monthly incidence rates of abusive encounters for family physicians in Canada.
Methods. A 7-page cross-sectional survey.
Results. Of the entire study sample (N = 720), 29% of the physicians reported having experienced an abusive event in the last month by a patient or patient family member. Abusive incidents were classified as minor, major, or severe. Of the physician participants who reported having been abused, all reported having experienced a minor event, 26% a major, and 8% a severe event. Of the physicians who experienced an abusive event, 55% were not aware of any policies to protect them, 76% did not seek help, and 64% did not report the abusive event.
Conclusion. Family physicians are subjected to significant amounts of abuse in their day-to-day practices. Few physicians are aware of workplace policies that could protect them, and fewer report abusive encounters. Physicians would benefit from increased awareness of institutional policies that can protect them against abusive patients and their families and from the development of a national policy
Method for fabricating submicron silicide structures on silicon using a resistless electron beam lithography process
Abstract : A novel resistless lithography process using a conventional electron beam system is presented. Metallic lines with widths of less than 50 nm were produced on silicon substrates. The process is based on localized heating with a focused electron beam of thin platinum layers deposited on silicon. It is demonstrated that silicide formation occurs at the Pt-Si interface. By using a dilute solution of aqua regia, it is possible to obtain a sufficient difference in etch rates between exposed and unexposed regions of the platinum thin film to selectively remove only the unexposed areas
A Novel Strategy Involved Anti-Oxidative Defense: The Conversion of NADH into NADPH by a Metabolic Network
The reduced nicotinamide adenine dinucleotide phosphate (NADPH) is pivotal to the cellular anti-oxidative defence strategies in most organisms. Although its production mediated by different enzyme systems has been relatively well-studied, metabolic networks dedicated to the biogenesis of NADPH have not been fully characterized. In this report, a metabolic pathway that promotes the conversion of reduced nicotinamide adenine dinucleotide (NADH), a pro-oxidant into NADPH has been uncovered in Pseudomonas fluorescens exposed to oxidative stress. Enzymes such as pyruvate carboxylase (PC), malic enzyme (ME), malate dehydrogenase (MDH), malate synthase (MS), and isocitrate lyase (ICL) that are involved in disparate metabolic modules, converged to create a metabolic network aimed at the transformation of NADH into NADPH. The downregulation of phosphoenol carboxykinase (PEPCK) and the upregulation of pyruvate kinase (PK) ensured that this metabolic cycle fixed NADH into NADPH to combat the oxidative stress triggered by the menadione insult. This is the first demonstration of a metabolic network invoked to generate NADPH from NADH, a process that may be very effective in combating oxidative stress as the increase of an anti-oxidant is coupled to the decrease of a pro-oxidant
Interacting Preformed Cooper Pairs in Resonant Fermi Gases
We consider the normal phase of a strongly interacting Fermi gas, which can
have either an equal or an unequal number of atoms in its two accessible spin
states. Due to the unitarity-limited attractive interaction between particles
with different spin, noncondensed Cooper pairs are formed. The starting point
in treating preformed pairs is the Nozi\`{e}res-Schmitt-Rink (NSR) theory,
which approximates the pairs as being noninteracting. Here, we consider the
effects of the interactions between the Cooper pairs in a Wilsonian
renormalization-group scheme. Starting from the exact bosonic action for the
pairs, we calculate the Cooper-pair self-energy by combining the NSR formalism
with the Wilsonian approach. We compare our findings with the recent
experiments by Harikoshi {\it et al.} [Science {\bf 327}, 442 (2010)] and
Nascimb\`{e}ne {\it et al.} [Nature {\bf 463}, 1057 (2010)], and find very good
agreement. We also make predictions for the population-imbalanced case, that
can be tested in experiments.Comment: 10 pages, 6 figures, accepted version for PRA, discussion of the
imbalanced Fermi gas added, new figure and references adde
- …