888 research outputs found
Stress correlations in glasses
We rigorously establish that, in disordered three-dimensional (3D) isotropic
solids, the stress autocorrelation function presents anisotropic terms that
decay as at long-range, with the distance, as soon as either
pressure or shear stress fluctuations are normal. By normal, we mean that the
fluctuations of stress, as averaged over spherical domains, decay as the
inverse domain volume. Since this property is required for macroscopic stress
to be self-averaging, it is expected to hold generically in all glasses and we
thus conclude that the presence of stress correlation tails is the rule
in these systems. Our proof follows from the observation that, in an infinite
medium, when both material isotropy and mechanical balance hold, (i) the stress
autocorrelation matrix is completely fixed by just two radial functions: the
pressure autocorrelation and the trace of the autocorrelation of stress
deviators; furthermore, these two functions (ii) fix the decay of the
fluctuations of sphere-averaged pressure and deviatoric stresses for windows of
increasing volume. Our conclusion is reached because, due to the precise
analytic relation (i) fixed by isotropy and mechanical balance, the constraints
arising via (ii) from the normality of stress fluctuations demand the spatially
anisotropic stress correlation terms to decay as at long-range. For the
sake of generality, we also examine situations when stress fluctuations are not
normal
Is nonrelativistic gravity possible?
We study nonrelativistic gravity using the Hamiltonian formalism. For the
dynamics of general relativity (relativistic gravity) the formalism is well
known and called the Arnowitt-Deser-Misner (ADM) formalism. We show that if the
lapse function is constrained correctly, then nonrelativistic gravity is
described by a consistent Hamiltonian system. Surprisingly, nonrelativistic
gravity can have solutions identical to relativistic gravity ones. In
particular, (anti-)de Sitter black holes of Einstein gravity and IR limit of
Horava gravity are locally identical.Comment: 4 pages, v2, typos corrected, published in Physical Review
Cavity polariton optomechanics: Polariton path to fully resonant dispersive coupling in optomechanical resonators
Resonant photoelastic coupling in semiconductor nanostructures opens new
perspectives for strongly enhanced light-sound interaction in optomechanical
resonators. One potential problem, however, is the reduction of the cavity
Q-factor induced by dissipation when the resonance is approached. We show in
this letter that cavity-polariton mediation in the light-matter process
overcomes this limitation allowing for a strongly enhanced photon-phonon
coupling without significant lifetime reduction in the strongly-coupled regime.
Huge optomechanical coupling factors in the PetaHz/nm range are envisaged,
three orders of magnitude larger than the backaction produced by the mechanical
displacement of the cavity mirrors.Comment: 6 pages, 4 figure
Microscopic nanomechanical dissipation in gallium arsenide resonators
We report on a systematic study of nanomechanical dissipation in
high-frequency (approximatively 300 MHz) gallium arsenide optomechanical disk
resonators, in conditions where clamping and fluidic losses are negligible.
Phonon-phonon interactions are shown to contribute with a loss background
fading away at cryogenic temperatures (3 K). Atomic layer deposition of alumina
at the surface modifies the quality factor of resonators, pointing towards the
importance of surface dissipation. The temperature evolution is accurately
fitted by two-level systems models, showing that nanomechanical dissipation in
gallium arsenide resonators directly connects to their microscopic properties.
Two-level systems, notably at surfaces, appear to rule the damping and
fluctuations of such high-quality crystalline nanomechanical devices, at all
temperatures from 3 to 300K
Effect of picosecond strain pulses on thin layers of the ferromagnetic semiconductor (Ga,Mn)(As,P)
The effect of picosecond acoustic strain pulses (ps-ASP) on a thin layer of
(Ga,Mn)As co-doped with phosphorus was probed using magneto-optical Kerr effect
(MOKE). A transient MOKE signal followed by low amplitude oscillations was
evidenced, with a strong dependence on applied magnetic field, temperature and
ps-ASP amplitude. Careful interferometric measurement of the layer's thickness
variation induced by the ps-ASP allowed us to model very accurately the
resulting signal, and interpret it as the strain modulated reflectivity
(differing for probe polarizations), independently from dynamic
magnetization effects.Comment: 6 pages, 5 figure
An acoustic black hole in a stationary hydrodynamic flow of microcavity polaritons
We report an experimental study of superfluid hydrodynamic effects in a
one-dimensional polariton fluid flowing along a laterally patterned
semiconductor microcavity and hitting a micron-sized engineered defect. At high
excitation power, superfluid propagation effects are observed in the polariton
dynamics, in particular, a sharp acoustic horizon is formed at the defect
position, separating regions of sub- and super-sonic flow. Our experimental
findings are quantitatively reproduced by theoretical calculations based on a
generalized Gross-Pitaevskii equation. Promising perspectives to observe
Hawking radiation via photon correlation measurements are illustrated.Comment: 5 pages Main + 5 pages Supplementary, 8 figure
- …