721 research outputs found
Regularizers for Vector-Valued Data and Labeling Problems in Image Processing
Дан обзор последних результатов в области регуляризаторов, основанных на полных вариациях, применительно к векторным данным. Результаты оказались полезными для хранения или улучшения мультимодальных данных и задач разметки на непрерывной области определения. Возможные регуляризаторы и их свойства рассматриваются в рамках единой модели.The review of recent developments on total variation-based regularizers is given with the emphasis on vector-valued data. These have been proven to be useful for restoring or enhancing data with multiple channels, and find particular use in relaxation techniques for labeling problems on continuous domains. The possible regularizers and their properties are considered in a unified framework.Наведено огляд останніх результатів у галузі регуляризаторів, що базуються на повних варіаціях, стосовно векторних даних. Результати виявилися корисними для зберігання та покращення мультимодальних даних і задач розмітки на неперервній області визначення. Можливі регуляризатори та їх властивості розглядаються в рамках єдиної моделі
Functional Liftings of Vectorial Variational Problems with Laplacian Regularization
We propose a functional lifting-based convex relaxation of variational
problems with Laplacian-based second-order regularization. The approach rests
on ideas from the calibration method as well as from sublabel-accurate
continuous multilabeling approaches, and makes these approaches amenable for
variational problems with vectorial data and higher-order regularization, as is
common in image processing applications. We motivate the approach in the
function space setting and prove that, in the special case of absolute
Laplacian regularization, it encompasses the discretization-first
sublabel-accurate continuous multilabeling approach as a special case. We
present a mathematical connection between the lifted and original functional
and discuss possible interpretations of minimizers in the lifted function
space. Finally, we exemplarily apply the proposed approach to 2D image
registration problems.Comment: 12 pages, 3 figures; accepted at the conference "Scale Space and
Variational Methods" in Hofgeismar, Germany 201
Individual Tree Species Classification from Airborne Multisensor Imagery Using Robust PCA
Remote sensing of individual tree species has many applications in resource management, biodiversity assessment, and conservation. Airborne remote sensing using light detection and ranging (LiDAR) and hyperspectral sensors has been used extensively to extract biophysical traits of vegetation and to detect species. However, its application for individual tree mapping remains limited due to the technical challenges of precise coalignment of images acquired from different sensors and accurately delineating individual tree crowns (ITCs). In this study, we developed a generic workflow to map tree species at ITC level from hyperspectral imagery and LiDAR data using a combination of well established and recently developed techniques. The workflow uses a nonparametric image registration approach to coalign images, a multiclass normalized graph cut method for ITC delineation, robust principal component analysis for feature extraction, and support vector machine for species classification. This workflow allows us to automatically map tree species at both pixel- and ITC-level. Experimental tests of the technique were conducted using ground data collected from a fully mapped temperate woodland in the UK. The overall accuracy of pixel-level classification was 91%, while that of ITC-level classification was 61%. The test results demonstrate the effectiveness of the approach, and in particular the use of robust principal component analysis to prune the hyperspectral dataset and reveal subtle difference among species.Department for Environment, Food and Rural AffairsThis is the author accepted manuscript. The final version is available from IEEE via http://dx.doi.org/10.1109/JSTARS.2016.256940
A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems
International audienceSzeliski et al. published an influential study in 2006 on energy minimization methods for Markov Random Fields (MRF). This study provided valuable insights in choosing the best optimization technique for certain classes of problems. While these insights remain generally useful today, the phenomenal success of random field models means that the kinds of inference problems that have to be solved changed significantly. Specifically , the models today often include higher order interactions, flexible connectivity structures, large label-spaces of different car-dinalities, or learned energy tables. To reflect these changes, we provide a modernized and enlarged study. We present an empirical comparison of more than 27 state-of-the-art optimization techniques on a corpus of 2,453 energy minimization instances from diverse applications in computer vision. To ensure reproducibility, we evaluate all methods in the OpenGM 2 framework and report extensive results regarding runtime and solution quality. Key insights from our study agree with the results of Szeliski et al. for the types of models they studied. However, on new and challenging types of models our findings disagree and suggest that polyhedral methods and integer programming solvers are competitive in terms of runtime and solution quality over a large range of model types
Rapid inference of object rigidity and reflectance using optic flow
Rigidity and reflectance are key object properties, important in their own rights, and they are key properties that stratify motion reconstruction algorithms. However, the inference of rigidity and reflectance are both difficult without additional information about the object's shape, the environment, or lighting. For humans, relative motions of object and observer provides rich information about object shape, rigidity, and reflectivity. We show that it is possible to detect rigid object motion for both specular and diffuse reflective surfaces using only optic flow, and that flow can distinguish specular and diffuse motion for rigid objects. Unlike nonrigid objects, optic flow fields for rigid moving surfaces are constrained by a global transformation, which can be detected using an optic flow matching procedure across time. In addition, using a Procrustes analysis of structure from motion reconstructed 3D points, we show how to classify specular from diffuse surfaces. © 2009 Springer Berlin Heidelberg
Search for the decay
We search for radiative decays into a weakly interacting neutral
particle, namely an invisible particle, using the produced through the
process in a data sample of
decays collected by the BESIII detector
at BEPCII. No significant signal is observed. Using a modified frequentist
method, upper limits on the branching fractions are set under different
assumptions of invisible particle masses up to 1.2 . The upper limit corresponding to an invisible particle with zero mass
is 7.0 at the 90\% confidence level
Precise Measurements of Branching Fractions for Meson Decays to Two Pseudoscalar Mesons
We measure the branching fractions for seven two-body decays to
pseudo-scalar mesons, by analyzing data collected at
GeV with the BESIII detector at the BEPCII collider. The branching fractions
are determined to be ,
,
,
,
,
,
,
where the first uncertainties are statistical, the second are systematic, and
the third are from external input branching fraction of the normalization mode
. Precision of our measurements is significantly improved
compared with that of the current world average values
Semi-supervised segmentation of ultrasound images based on patch representation and continuous min cut.
Ultrasound segmentation is a challenging problem due to the inherent speckle and some artifacts like shadows, attenuation and signal dropout. Existing methods need to include strong priors like shape priors or analytical intensity models to succeed in the segmentation. However, such priors tend to limit these methods to a specific target or imaging settings, and they are not always applicable to pathological cases. This work introduces a semi-supervised segmentation framework for ultrasound imaging that alleviates the limitation of fully automatic segmentation, that is, it is applicable to any kind of target and imaging settings. Our methodology uses a graph of image patches to represent the ultrasound image and user-assisted initialization with labels, which acts as soft priors. The segmentation problem is formulated as a continuous minimum cut problem and solved with an efficient optimization algorithm. We validate our segmentation framework on clinical ultrasound imaging (prostate, fetus, and tumors of the liver and eye). We obtain high similarity agreement with the ground truth provided by medical expert delineations in all applications (94% DICE values in average) and the proposed algorithm performs favorably with the literature
- …