11 research outputs found

    Laser interstitial thermal therapy is effective and safe for the treatment of brain tumors in NF1 patients after cerebral revascularization for moyamoya angiopathy: a report on two cases

    Get PDF
    BackgroundThe co-occurrence of moyamoya vasculopathy and extra-optic pathway tumors is rare in neurofibromatosis type 1 (NF1), with only four cases described in the literature. Brain surgery in these patients may be challenging because of the risk of brain infarction after skin and dural incision. Given its percutaneous and minimally invasive nature, laser interstitial thermal therapy (LITT) is an ideal option for the treatment of brain tumors in these patients. Here, we report on two patients with NF1 and moyamoya syndrome (MMS) treated for a brain glioma with LITT, after cerebral revascularization.CasesThe first patient, with familial NF1, underwent bilateral indirect revascularization with multiple burr holes (MBH) for symptomatic MMS. Two years later, she was diagnosed with a left temporal tumor, with evidence of radiologic progression over 10 months. The second patient, also with familial NF1, developed unilateral MMS when he was 6 years old and was treated with MBH. At the age of 15 years, MRI showed a right cingular lesion, growing on serial MRIs. Both patients underwent LITT with no perioperative complications; they are progression free at 10 and 12 months, respectively, and the tumors have decreased in volume.DiscussionWhile the association of extra-optic neoplasm and moyamoya angiopathy is seldom reported in NF1, tumor treatment is challenging in terms of both avoiding stroke and achieving oncological control. Here, we show in 2 cases, that LITT could be a safe and effective option in these rare conditions

    Surgical revascularization of frontal areas in pediatric Moyamoya vasculopathy: a systematic review

    Full text link
    OBJECTIVE To systematically review the literature on surgical revascularization techniques for flow-augmentation of the frontal areas and/or anterior cerebral artery (ACA) territory in children with Moyamoya vasculopathy (MMV), to elucidate the current surgical practice and describe the outcome associated to the different techniques. EVIDENCE ACQUISITION The systematic review followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement. MEDLINE, Web of Science and EMBASE were searched up to April 2020. Published techniques were systematically analyzed according to level of evidence, revascularization technique, opening of the interhemispheric fissure (IF), uni- or bilateral revascularization, clinical, neurocognitive, angiographic, perfusion and hemodynamic outcome. EVIDENCE SYNTHESIS Twenty-five studies were enrolled, including 829 patients: among these, 13 patients underwent direct revascularization of ACA territories, 570 indirect revascularization and 246 patients combined revascularization. One study reached a level of evidence II (grade of recommendation B), 8 studies were level III (grade B) and 16 studies were level IV (grade C). The surgical techniques proposed in the enrolled papers were systematically described. CONCLUSIONS Combined techniques (grade of recommendation B) and indirect techniques (grade of recommendation C) are considered effective for revascularizing the frontal areas and/or anterior cerebral artery (ACA) territory in children with MMV. While performing the revascularization, surgical risks can be reduced by avoiding the exposure of the superior sagittal sinus and opening of IF (recommendation grade C). There is not sufficient evidence to define which type of surgical technique should be preferred. Future studies are needed for a longitudinal assessment of comparable outcomes and to determine which revascularization technique for the frontal areas and/or ACA territory is optimal for this highly specific pediatric population

    Cerebral and occipito-atlanto-axial involvement in mucopolysaccharidosis patients: clinical, radiological, and neurosurgical features

    No full text
    Abstract Background Neurosurgical features of mucopolysaccharidosis (MPS) patients mainly involve the presence of cranio-vertebral junction (CVJ) abnormalities and the development of communicating hydrocephalus. CVJ pathology is a critical aspect that severely influences the morbidity and mortality of MPS patients. Hydrocephalus is slowly progressing; it must be differentiated from cerebral atrophy, and rarely requires treatment. The aim of this paper was to review the literature concerning these conditions, highlighting their clinical, radiological, and surgical aspects to provide a practical point of view for clinicians. Results CVJ involvement may present with cervical pain, unsteady gait, frequent falls, and progressive impairment of autonomous ambulation, an acute tetraplegia even after minor trauma. Magnetic resonance imaging (MRI) of the cervical spine, including active dynamic flexion and extension scans, is the most powerful imaging technique for detecting spinal cord compression at the CVJ in MPS patients. The main radiological features include atlanto-axial subluxation, odontoid hypoplasia, periodontoid soft tissue masses, spinal canal narrowing, and spinal cord compression. Together with MRI, fine-cut computed tomography (CT) scans with coronal and sagittal three-dimensional reconstructions are important diagnostic tools in the preoperative workup thanks to the information gleaned about bone structure conformation and angles. Finally, angio-CT slices are equally useful in preoperative planning, defining vertebral artery position in relation to bony structures. Surgery of the CVJ is proposed both to treat cord compression with MRI signs of myelopathy or as a preventive treatment in patients at high risk of cord damage. Among different surgical options, we always suggest performing decompression and instrumented stabilization. Hydrocephalus may occasionally present clinically with intracranial hypertension symptoms such as headache, vomiting, and high sight impairment. Neurocognitive symptoms may be hidden by the constitutive cognitive impairment. MRI with a study of dynamic cerebrospinal fluid (CSF) flow is helpful to differentiate from ventriculomegaly, which does not require treatment. Ventriculo-peritoneal shunt placement is the gold standard to treat hydrocephalus, although endoscopic third ventriculostomy has recently shown good results in some patients. Conclusion Early recognition of CVJ pathology and hydrocephalus is critical to avoid the development of severe complications. A multidisciplinary approach involving physicians, neuroradiologists, and neurosurgeons is needed to detect such conditions and to select patients eligible for surgery

    Flow-augmentation bypass in the treatment of acute ischemic stroke

    Full text link
    INTRODUCTION Results of two randomized trials did not show benefit of revascularization with extracranial-intracranial (EC-IC) flow augmentation bypass in patients with symptomatic occlusion of internal carotid artery (ICA). However, patients with acute stroke were not included in these studies. Herein, we systematically analyze and discuss the literature about flow augmentation bypass for treatment of acute ischemic stroke. EVIDENCE ACQUISITION This systematic review followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement. MEDLINE, Web of Science and EMBASE were independently searched by two reviewers for published series to identify literature relating to EC-IC bypass in the surgical management of acute ischemic stroke up to June 2020. Studies were categorized according to their level of evidence. EVIDENCE SYNTHESIS Nineteen studies met the inclusion criteria for the systematic literature review, including 16 level IV studies (ten case series and six6 case reports) and three level III studies (retrospective cohort case-control studies). Occurrence of fatal or non-fatal ischemic or hemorrhagic postoperative stroke, as well as clinical functional outcome at follow-up were considered as primary and secondary endpoints, respectively. CONCLUSIONS The literature about flow augmentation bypass for treatment of acute ischemic stroke is scarce and heterogenous, with only 19 studies. The results of the present systematic review encourage further study to explore and validate the use of EC-IC bypass in the treatment of anterior circulation acute ischemic stroke in highly selected patients (symptomatic and with persistent penumbra despite best medical/endovascular treatment)

    Hemodynamic Imaging in Cerebral Diffuse Glioma-Part B: Molecular Correlates, Treatment Effect Monitoring, Prognosis, and Future Directions

    Full text link
    Gliomas, and glioblastoma in particular, exhibit an extensive intra- and inter-tumoral molecular heterogeneity which represents complex biological features correlating to the efficacy of treatment response and survival. From a neuroimaging point of view, these specific molecular and histopathological features may be used to yield imaging biomarkers as surrogates for distinct tumor genotypes and phenotypes. The development of comprehensive glioma imaging markers has potential for improved glioma characterization that would assist in the clinical work-up of preoperative treatment planning and treatment effect monitoring. In particular, the differentiation of tumor recurrence or true progression from pseudoprogression, pseudoresponse, and radiation-induced necrosis can still not reliably be made through standard neuroimaging only. Given the abundant vascular and hemodynamic alterations present in diffuse glioma, advanced hemodynamic imaging approaches constitute an attractive area of clinical imaging development. In this context, the inclusion of objective measurable glioma imaging features may have the potential to enhance the individualized care of diffuse glioma patients, better informing of standard-of-care treatment efficacy and of novel therapies, such as the immunotherapies that are currently increasingly investigated. In Part B of this two-review series, we assess the available evidence pertaining to hemodynamic imaging for molecular feature prediction, in particular focusing on isocitrate dehydrogenase (IDH) mutation status, MGMT promoter methylation, 1p19q codeletion, and EGFR alterations. The results for the differentiation of tumor progression/recurrence from treatment effects have also been the focus of active research and are presented together with the prognostic correlations identified by advanced hemodynamic imaging studies. Finally, the state-of-the-art concepts and advancements of hemodynamic imaging modalities are reviewed together with the advantages derived from the implementation of radiomics and machine learning analyses pipelines

    Hemodynamic Imaging in Cerebral Diffuse Glioma—Part A: Concept, Differential Diagnosis and Tumor Grading

    No full text
    Diffuse gliomas are the most common primary malignant intracranial neoplasms. Aside from the challenges pertaining to their treatment—glioblastomas, in particular, have a dismal prognosis and are currently incurable—their pre-operative assessment using standard neuroimaging has several drawbacks, including broad differentials diagnosis, imprecise characterization of tumor subtype and definition of its infiltration in the surrounding brain parenchyma for accurate resection planning. As the pathophysiological alterations of tumor tissue are tightly linked to an aberrant vascularization, advanced hemodynamic imaging, in addition to other innovative approaches, has attracted considerable interest as a means to improve diffuse glioma characterization. In the present part A of our two-review series, the fundamental concepts, techniques and parameters of hemodynamic imaging are discussed in conjunction with their potential role in the differential diagnosis and grading of diffuse gliomas. In particular, recent evidence on dynamic susceptibility contrast, dynamic contrast-enhanced and arterial spin labeling magnetic resonance imaging are reviewed together with perfusion-computed tomography. While these techniques have provided encouraging results in terms of their sensitivity and specificity, the limitations deriving from a lack of standardized acquisition and processing have prevented their widespread clinical adoption, with current efforts aimed at overcoming the existing barriers

    Hemodynamic Imaging in Cerebral Diffuse Glioma-Part A: Concept, Differential Diagnosis and Tumor Grading

    Full text link
    Diffuse gliomas are the most common primary malignant intracranial neoplasms. Aside from the challenges pertaining to their treatment-glioblastomas, in particular, have a dismal prognosis and are currently incurable-their pre-operative assessment using standard neuroimaging has several drawbacks, including broad differentials diagnosis, imprecise characterization of tumor subtype and definition of its infiltration in the surrounding brain parenchyma for accurate resection planning. As the pathophysiological alterations of tumor tissue are tightly linked to an aberrant vascularization, advanced hemodynamic imaging, in addition to other innovative approaches, has attracted considerable interest as a means to improve diffuse glioma characterization. In the present part A of our two-review series, the fundamental concepts, techniques and parameters of hemodynamic imaging are discussed in conjunction with their potential role in the differential diagnosis and grading of diffuse gliomas. In particular, recent evidence on dynamic susceptibility contrast, dynamic contrast-enhanced and arterial spin labeling magnetic resonance imaging are reviewed together with perfusion-computed tomography. While these techniques have provided encouraging results in terms of their sensitivity and specificity, the limitations deriving from a lack of standardized acquisition and processing have prevented their widespread clinical adoption, with current efforts aimed at overcoming the existing barriers

    Hemodynamic Imaging in Cerebral Diffuse Glioma—Part B: Molecular Correlates, Treatment Effect Monitoring, Prognosis, and Future Directions

    No full text
    Gliomas, and glioblastoma in particular, exhibit an extensive intra- and inter-tumoral molecular heterogeneity which represents complex biological features correlating to the efficacy of treatment response and survival. From a neuroimaging point of view, these specific molecular and histopathological features may be used to yield imaging biomarkers as surrogates for distinct tumor genotypes and phenotypes. The development of comprehensive glioma imaging markers has potential for improved glioma characterization that would assist in the clinical work-up of preoperative treatment planning and treatment effect monitoring. In particular, the differentiation of tumor recurrence or true progression from pseudoprogression, pseudoresponse, and radiation-induced necrosis can still not reliably be made through standard neuroimaging only. Given the abundant vascular and hemodynamic alterations present in diffuse glioma, advanced hemodynamic imaging approaches constitute an attractive area of clinical imaging development. In this context, the inclusion of objective measurable glioma imaging features may have the potential to enhance the individualized care of diffuse glioma patients, better informing of standard-of-care treatment efficacy and of novel therapies, such as the immunotherapies that are currently increasingly investigated. In Part B of this two-review series, we assess the available evidence pertaining to hemodynamic imaging for molecular feature prediction, in particular focusing on isocitrate dehydrogenase (IDH) mutation status, MGMT promoter methylation, 1p19q codeletion, and EGFR alterations. The results for the differentiation of tumor progression/recurrence from treatment effects have also been the focus of active research and are presented together with the prognostic correlations identified by advanced hemodynamic imaging studies. Finally, the state-of-the-art concepts and advancements of hemodynamic imaging modalities are reviewed together with the advantages derived from the implementation of radiomics and machine learning analyses pipelines

    Pediatric brainstem cavernous malformations: 2-center experience in 40 children

    Full text link
    OBJECTIVE Brainstem cavernous malformations (BSCMs) are relatively uncommon, low-flow vascular lesions in children. Given the paucity of data, guidelines regarding the clinical management of BSCMs in children are lacking and the surgical indication is most commonly based on an individual surgeon's judgment and experience. The goal in this study was to evaluate the clinical behavior of BSCMs in childhood and the long-term outcome in children managed conservatively and surgically. METHODS This was an observational, retrospective study including all children with BSCMs who were followed at 2 institutions between 2008 and 2020. RESULTS The study population consisted of 40 children (27 boys, 67.5%) with a mean age of 11.4 years. Twenty-three children (57.5%) were managed conservatively, whereas 17 children (42.5%) underwent resection of BSCMs. An aggressive clinical course was observed in 13 children (32.5%), who experienced multiple hemorrhages with a progressive pattern of neurological decline. Multiple BSCMs were observed in 8 patients, of whom 3 patients presented with a complex of multiple tightly attached BSCMs and posed a significant therapeutic challenge. The overall long-term outcome was favorable (modified Rankin Scale [mRS] scores 0-2) in 36 patients (90%), whereas an unfavorable outcome (mRS scores 3 and 4) was seen in 4 children (10%). An mRS score of 5 or 6 was not observed. The mean (± SD) follow-up was 88.0 (± 92.6) months. CONCLUSIONS The clinical course of BSCMs in children is highly variable, with benign lesions on the one hand and highly aggressive lesions with repetitive hemorrhages on the other. Given the greater life expectancy and the known higher functional recovery in children, surgical treatment should be considered early in young patients presenting with surgically accessible lesions and an aggressive clinical course, and it should be performed in a high-volume center
    corecore