32 research outputs found

    PA from an H5N1 highly pathogenic avian influenza virus activates viral transcription and replication and induces apoptosis and interferon expression at an early stage of infection

    Get PDF
    BACKGROUND: Although gene exchange is not likely to occur freely, reassortment between the H5N1 highly pathogenic avian influenza virus (HPAIV) and currently circulating human viruses is a serious concern. The PA polymerase subunit of H5N1 HPAIV was recently reported to activate the influenza replicon activity. METHODS: The replicon activities of PR8 and WSN strains (H1N1) of influenza containing PA from HPAIV A/Cambodia/P0322095/2005 (H5N1) and the activity of the chimeric RNA polymerase were analyzed. A reassortant WSN virus containing the H5N1 Cambodia PA (C-PA) was then reconstituted and its growth in cells and pathogenicity in mice examined. The interferon promoter, TUNEL, and caspase 3, 8, and 9 activities of C-PA-infected cells were compared with those of WSN-infected cells. RESULTS: The activity of the chimeric RNA polymerase was slightly higher than that of WSN, and C-PA replicated better than WSN in cells. However, the multi-step growth of C-PA and its pathogenicity in mice were lower than those of WSN. The interferon promoter, TUNEL, and caspase 3, 8, and 9 activities were strongly induced in early infection in C-PA-infected cells but not in WSN-infected cells. CONCLUSIONS: Apoptosis and interferon were strongly induced early in C-PA infection, which protected the uninfected cells from expansion of viral infection. In this case, these classical host-virus interactions contributed to the attenuation of this strongly replicating virus

    Shedding of the Pandemic Swine-Origin Influenza A Virus (H1N1) after Oseltamivir Administration

    No full text
    International audienceWe analyzed the virus shedding of an oseltamivir-treated patient who had been infected with the pandemic swine-origin influenza A (H1N1) virus which had an oseltamivir-sensitive neuraminidase. The virus was isolated from the pharyngeal swabs of the patient using MDCK cells, and the virus genome RNA was detected in the same samples both by real-time RT-PCR and RTPCR. The virus was isolated until 44 h after oseltamivir administration although the virus genome was detected until one day after oseltamivir treatment was stopped. Due to their high sensitivity, RT-PCR and real-time RT-PCR may cause misdiagnosis by detection of viral genome which does not infect, and classical virus isolation and clinical symptoms are recommended for the evaluation of oseltamivir treatment

    The N-terminal helix α(0) of hepatitis C virus NS3 protein dictates the subcellular localization and stability of NS3/NS4A complex.

    No full text
    International audienceThe N-terminal amphipathic helix α(0) of hepatitis C virus (HCV) NS3 protein is an essential structural determinant for the protein membrane association. Here, we performed functional analysis to probe the role of this helix α(0) in the HCV life cycle. A point mutation M21P in this region that destroyed the helix formation disrupted the membrane association of NS3 protein and completely abolished HCV replication. Mechanistically the mutation did not affect either protease or helicase/NTPase activities of NS3, but significantly reduced the stability of NS3 protein. Furthermore, the membrane association and stability of NS3 protein can be restored by replacing the helix α(0) with an amphipathic helix of the HCV NS5A protein. In summary, our data demonstrated that the amphipathic helix α(0) of NS3 protein determines the proper membrane association of NS3, and this subcellular localization dictates the functional role of NS3 in the HCV life cycle

    The N-terminal helix α(0) of hepatitis C virus NS3 protein dictates the subcellular localization and stability of NS3/NS4A complex.

    Get PDF
    International audienceThe N-terminal amphipathic helix α(0) of hepatitis C virus (HCV) NS3 protein is an essential structural determinant for the protein membrane association. Here, we performed functional analysis to probe the role of this helix α(0) in the HCV life cycle. A point mutation M21P in this region that destroyed the helix formation disrupted the membrane association of NS3 protein and completely abolished HCV replication. Mechanistically the mutation did not affect either protease or helicase/NTPase activities of NS3, but significantly reduced the stability of NS3 protein. Furthermore, the membrane association and stability of NS3 protein can be restored by replacing the helix α(0) with an amphipathic helix of the HCV NS5A protein. In summary, our data demonstrated that the amphipathic helix α(0) of NS3 protein determines the proper membrane association of NS3, and this subcellular localization dictates the functional role of NS3 in the HCV life cycle

    Shedding of the Pandemic Swine-Origin Influenza A Virus (H1N1) after Oseltamivir Administration

    Get PDF
    which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We analyzed the virus shedding of an oseltamivir-treated patient who had been infected with the pandemic swine-origin influenza A (H1N1) virus which had an oseltamivir-sensitive neuraminidase. The virus was isolated from the pharyngeal swabs of the patient using MDCK cells, and the virus genome RNA was detected in the same samples both by real-time RT-PCR and RT-PCR. The virus was isolated until 44 h after oseltamivir administration although the virus genome was detected until one day after oseltamivir treatment was stopped. Due to their high sensitivity, RT-PCR and real-time RT-PCR may cause misdiagnosis by detection of viral genome which does not infect, and classical virus isolation and clinical symptoms are recommended for the evaluation of oseltamivir treatment. 1

    DHX15 Senses Double-Stranded RNA in Myeloid Dendritic Cells

    No full text

    Modification of hepatitis C virus 1b RNA polymerase to make a highly active JFH1-type polymerase by mutation of the thumb domain.

    No full text
    International audienceHepatitis C virus (HCV) JFH1 efficiently replicates and produces infectious virus particles in cultured cells. We compared polymerase activity between JFH1 and 1b strains in vitro. The RNA polymerase activity of 1b was 6.4% of that of JFH1. In order to study the mechanism and identify domains responsible for the high polymerase activity of JFH1, we converted the amino acids of 1b RdRp to those of JFH1, and compared their Km, Vmax and template binding activity. Four amino acid mutations in the thumb domain of 1b RdRp, S377R, A450S, E455N and Y561F increased 1b polymerase activity, and their activity was 23.1, 45.8, 28.9, and 36.1% of JFH1, respectively. Vmax and RNA binding activity of JFH1, 1bwt and 1bA450S was JFH1 > 1bA450S > 1b, which indicated both high processivity and slightly higher template binding activity contributed to the high polymerase activity of JFH1

    Biochemical characterization of enterovirus 71 3D RNA polymerase.

    No full text
    International audienceAn unusual enterovirus 71 (EV71) epidemic has begun in China since 2008. EV71 RNA polymerases (3D(pol)) showed polymerase activity with an Mn(2+). Little activity was detected with Co(2+), and no activity was detected with Mg(2+), Ca(2+), Cu(2+), Ni(2+), Cd(2+), or Zn(2+). It is a primer-dependent polymerase, and the enzyme functioned with both di- and 10-nucleotide RNA primers. DNA primer, dT15, increased primer activity, similar to other enterovirus 3D(pol). However, EV71 3D(pol) initiated de novo transcription with a poly(C) template and genome RNA. Its RNA binding activity was weak. Terminal nucleotidyl transferase and reverse transcriptase activity were not detected. The Km and Vmax for EV71 3D(pol) were calculated from classic Lineweaver-Burk plots. The Km values were 2.35±0.05 (ATP), 5.40±0.93 (CTP), 1.12±0.10 (GTP) and 2.81±0.31 (UTP), and the Vmax values were 0.00078±0.00005/min (ATP), 0.011±0.0017/min (CTP), 0.050±0.0043/min (GTP) and 0.0027±0.0005/min (UTP). The Km of EV71 3D(pol) was similar to that of foot and mouth disease virus and rhinovirus. Polymerase activity of BrCr-TR strain and a strain from a clinical isolate in Beijing, 2008 were similar, indicating the potential for 3D(pol) as an antiviral drug target

    Biochemical and kinetic analysis of the influenza virus RNA polymerase purified from insect cells.

    No full text
    International audienceThe influenza virus RNA polymerase (RdRp) was purified from insect cells (around 0.2mg/l). The RdRp catalyzed all the biochemical reactions of influenza virus transcription and replication in vitro; dinucleotide ApG and globin mRNA-primed transcription, de novo initiation (replication), and polyadenylation. The optimal Mg concentration, pH and temperature were 8mM, 8.0 and 25 degrees C, respectively, which were slightly different from those measured for RdRp of virions. This system is a single-round transcription system. K(m) (microM) were 10.74+/-0.26 (GTP), 33.22+/-3.37 (ATP), 28.93+/-0.48 (CTP) and 22.01+/-1.48 (UTP), and V(max) (fmol nucleotide/pmol RdRp/min) were 2.40+/-0.032 (GTP), 1.95+/-0.17 (ATP), 2.07+/-0.17 (CTP), and 1.52+/-0.38 (UTP), which agreed with high mutation of influenza viruses
    corecore