16 research outputs found
Effect and mechanism of reactive oxygen species-responsive nanoparticles on the regulation of human gingival fibroblast function and inflammation induced by lipopolysaccharide
Objective To investigate the effects of PssL-NAC reactive oxygen species (ROS)-responsive nanoparticles on intracellular ROS production, inflammatory factor levels, collagen production, cell function and Toll-like receptor 4 (TLR4), NF-κB nuclear factor-κB (p65) pathway protein expression in human gingival fibroblasts (HGFs) induced by Porphyromonas gingivalis-lipopolysaccharide (P.g-LPS). Methods This study was reviewed and approved by the ethics committee. PssL-NAC microspheres containing oil soluble antioxidant N-acetylcysteine (NAC) were obtained by connecting the hydrophobic end of polycaprolactone (PCL) and the hydrophilic end of polyethylene glycol (PEG) via thioketal (TK) bonds in response to ROS, and self loading in the aqueous and oil phases. After preparation of the PssL-NAC microspheres and aqueous NAC solution, successful synthesis of the nanoparticles was verified by transmission electron microscopy. Then, HGFs were exposed to P.g-LPS (0, 5, or 10 μg/mL), P.g-LPS (0, 5, or 10 μg/mL)+NAC, and P.g-LPS (0, 5, or 10 μg/mL)+PssL-NAC, and the ROS levels in the different groups were observed under confocal microscopy to determine the concentration of P.g-LPS for use in subsequent experiments. The groups were as follows: control group (no treatment), P.g-LPS group (HGFs treated with P.g-LPS), NAC group (HGFs treated with P.g-LPS and NAC), and PssL-NAC group (HGFs treated with P.g-LPS and PssL-NAC). Cell counting kit-8 (CCK-8) assays verified the biosafety of PssL-NAC. The ROS levels in the different groups were detected by DCFH-DA probes and observed via confocal microscopy. Real-time qPCR (RT-qPCR) was used to monitor the gene expression levels of the intracellular inflammatory cytokines interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), collagen 1 (COL1) and collagen 3 (COL3). The effect of PssL-NAC on the migration of HGFs was observed via the scratch test. The protein expression of TLR4-NF-κB, and phosphorylated p65 (p-p65) in the TLR4-NF-κB pathway was evaluated by Western blot. Results PssL-NAC had no significant effect on HGF proliferation (P>0.05). At elevated P.g-LPS concentrations, PssL-NAC maintained intracellular ROS levels approximately twice those in the control group (P<0.001). PssL-NAC significantly decreased P.g-LPS-induced IL-6 (P<0.001) and TNF-α (P<0.001) gene expression and increased COL1 gene expression (P<0.001). After P.g-LPS stimulation, PssL-NAC restored cell migration to the control level (P>0.05) and decreased the protein expression of TLR4 (P<0.001), p65 (P = 0.006), and p-p65 (P = 0.017) in the TLR4-NF-κB pathway. Conclusion PssL-NAC maintains the appropriate intracellular ROS concentration, alleviates P.g-LPS-induced inflammation in HGFs through the TLR4-NF-κB pathway, and restores the cell functions of collagen production and migration in an inflammatory environment
Effect and mechanism of reactive oxygen species-responsive nanoparticles on the regulation of human gingival fibroblast function and inflammation induced by lipopolysaccharide
Objective To investigate the effects of PssL-NAC reactive oxygen species (ROS)-responsive nanoparticles on intracellular ROS production, inflammatory factor levels, collagen production, cell function and Toll-like receptor 4 (TLR4), NF-κB nuclear factor-κB (p65) pathway protein expression in human gingival fibroblasts (HGFs) induced by Porphyromonas gingivalis-lipopolysaccharide (P.g-LPS). Methods This study was reviewed and approved by the ethics committee. PssL-NAC microspheres containing oil soluble antioxidant N-acetylcysteine (NAC) were obtained by connecting the hydrophobic end of polycaprolactone (PCL) and the hydrophilic end of polyethylene glycol (PEG) via thioketal (TK) bonds in response to ROS, and self loading in the aqueous and oil phases. After preparation of the PssL-NAC microspheres and aqueous NAC solution, successful synthesis of the nanoparticles was verified by transmission electron microscopy. Then, HGFs were exposed to P.g-LPS (0, 5, or 10 μg/mL), P.g-LPS (0, 5, or 10 μg/mL)+NAC, and P.g-LPS (0, 5, or 10 μg/mL)+PssL-NAC, and the ROS levels in the different groups were observed under confocal microscopy to determine the concentration of P.g-LPS for use in subsequent experiments. The groups were as follows: control group (no treatment), P.g-LPS group (HGFs treated with P.g-LPS), NAC group (HGFs treated with P.g-LPS and NAC), and PssL-NAC group (HGFs treated with P.g-LPS and PssL-NAC). Cell counting kit-8 (CCK-8) assays verified the biosafety of PssL-NAC. The ROS levels in the different groups were detected by DCFH-DA probes and observed via confocal microscopy. Real-time qPCR (RT-qPCR) was used to monitor the gene expression levels of the intracellular inflammatory cytokines interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), collagen 1 (COL1) and collagen 3 (COL3). The effect of PssL-NAC on the migration of HGFs was observed via the scratch test. The protein expression of TLR4-NF-κB, and phosphorylated p65 (p-p65) in the TLR4-NF-κB pathway was evaluated by Western blot. Results PssL-NAC had no significant effect on HGF proliferation (P>0.05). At elevated P.g-LPS concentrations, PssL-NAC maintained intracellular ROS levels approximately twice those in the control group (P0.05) and decreased the protein expression of TLR4 (P<0.001), p65 (P = 0.006), and p-p65 (P = 0.017) in the TLR4-NF-κB pathway. Conclusion PssL-NAC maintains the appropriate intracellular ROS concentration, alleviates P.g-LPS-induced inflammation in HGFs through the TLR4-NF-κB pathway, and restores the cell functions of collagen production and migration in an inflammatory environment
EPO could be regulated by HIF-1 and promote osteogenesis and accelerate bone repair
AbstractBone defects caused by many factors prompt further study of pathological process and restoration methods. This study was aimed to clarify the effect of erythropoietin on the repair of bone defect. We added the designated concentration of rhEPO to endothelial progenitor cells and marrow stromal cells, then detected its osteogenic and angiogenesis effects. The results showed that rhEPO promoted the proliferation of EPC and ST2 by promoting the mitosis without affecting cell apoptosis. The protein and mRNA levels of angiogenesis and osteogenic related factors exhibited higher expressions. Additionally, rhEPO encapsulated in PLGA scaffolds accelerated the new bone formation in rat calvaria bone defect model. Since the centre of bone defect was hypoxia environment, we cultured EPC and ST2 under hypoxia. SiRNA and an inhibitor of HIF-1 were used to interfere HIF-1, then the following changes of VEGF and EPO were detected. The results showed that all the factors were upregulated under the hypoxia environment. The expression of VEGF at protein and mRNA level decreased as HIF-1 was inhibited or interfered from 6 h, while the mRNA expression of EPO from 6 h and changed significantly at protein level from 12 h. Therefore, EPO is a promising factor for further studies
Cerium oxide nanoparticles loaded nanofibrous membranes promote bone regeneration for periodontal tissue engineering
Bone regeneration is a crucial part in the treatment of periodontal tissue regeneration, in which new attempts come out along with the development of nanomaterials. Herein, the effect of cerium oxide nanoparticles (CeO2 NPs) on the cell behavior and function of human periodontal ligament stem cells (hPDLSCs) was investigated. Results of CCK-8 and cell cycle tests demonstrated that CeO2 NPs not only had good biocompatibility, but also promoted cell proliferation. Furthermore, the levels of alkaline phosphatase activity, mineralized nodule formation and expressions of osteogenic genes and proteins demonstrated CeO2 NPs could promote osteogenesis differentiation of hPDLSCs. Then we chose electrospinning to fabricate fibrous membranes containing CeO2 NPs. We showed that the composite membranes improved mechanical properties as well as realized release of CeO2 NPs. We then applied the composite membranes to in vivo study in rat cranial defect models. Micro-CT and histopathological evaluations revealed that nanofibrous membranes with CeO2 NPs further accelerated new bone formation. Those exciting results demonstrated that CeO2 NPs and porous membrane contributed to osteogenic ability, and CeO2 NPs contained electrospun membrane may be a promising candidate material for periodontal bone regeneration
2024-05-05 Raw data "Comparison of the effects between catalase and superoxide dismutase on regulating macrophage inflammatory response and protecting osteogenic function of periodontal ligament cells"
Background: Reactive oxygen species (ROS) have been confirmed closely associated with the pathological process of periodontitis, but the specific roles played by different ROS types are still to be investigated. Catalase (CAT) and Superoxide dismutase (SOD) specifically eliminate hydrogen peroxide (H2O2) and superoxide anion (O2•-), respectively. We for the first time compare the effects and mechanisms of CAT and SOD in protecting periodontal ligament cells (PDLCs) against oxidative damage, reducing the expression of macrophage inflammatory factors, and preserving the osteogenic differentiation function of PDLCs by modulating the inflammatory environment.Methods: CAT or SOD in combination with lipopolysaccharide (LPS) were added to the culture medium of RAW 264.7 and PDLCs. The intracellular ROS level, lipid peroxidation and DNA damage were observed by confocal microscope. Inflammation levels were assessed by real-time quantitative polymerase chain reaction (RT-qPCR) and western blot. A co-culture system of macrophages and PDLCs was established, and the osteogenic differentiation of PDLCs was evaluated by alkaline phosphatase staining, alizarin red S staining, RT-qPCR and Western blot. Finally, differentially expressed genes (DEGs) in CAT and SOD were detected by RNA sequencing and the biological functions and signaling pathways involved were analyzed.Results: CAT or SOD can effectively inhibit intracellular ROS levels, lipid peroxidation and DNA damage, as well as increase the levels of antioxidative molecules and decrease the levels of inflammatory factors. SOD increased the levels of antioxidative molecules more strongly, while CAT reduced inflammatory factors more effectively. The RNA sequencing results indicate that CAT exhibits stronger inhibitory effects on inflammation-related signaling pathways, which could account for the above-mentioned differences.Conclusions: In this study, we observed differential antioxidant and anti-inflammatory effects between CAT and SOD, which may be associated with CAT's better inhibition of the activation of inflammatory pathways. Our study will provide scientific references for the future development of highly selective ROS- scavenging antioxidant drugs.</p
DataSheet1_Robust intervention for oxidative stress-induced injury in periodontitis via controllably released nanoparticles that regulate the ROS-PINK1-Parkin pathway.pdf
Oxidative stress in periodontitis has emerged as one of the greatest barriers to periodontal tissue restoration. In this study, we synthesized controlled drug release nanoparticles (MitoQ@PssL NPs) by encasing mitoquinone (MitoQ; an autophagy enhancer) into tailor-made reactive oxygen species (ROS)-cleavable amphiphilic polymer nanoparticles (PssL NPs) to regulate the periodontitis microenvironment. Once exposed to reactive oxygen species, which were substantially overproduced under oxidative stress conditions, the ROS-cleavable PssL was disintegrated, promoting the release of the encapsulated MitoQ. The released mitoquinone efficiently induced mitophagy through the PINK1-Parkin pathway and successfully reduced oxidative stress by decreasing the amount of reactive oxygen species. With the gradual decrease in the reactive oxygen species level, which was insufficient to disintegrate PssL, the release of mitoquinone was reduced and eventually eliminated, which contributed to a redox homeostasis condition and facilitated the regeneration of periodontal tissue. MitoQ@PssL NPs have great potential in the treatment of periodontitis via microenvironment-controlled drug release, which will provide a new avenue for periodontal regeneration and diseases related to imbalanced redox metabolism.</p