1,040 research outputs found
Study of and and
We study the decays of and to the final states
and based on a single
baryon tag method using data samples of
and events collected with
the BESIII detector at the BEPCII collider. The decays to
are observed for the first time. The
measured branching fractions of and
are in good agreement with, and much
more precise, than the previously published results. The angular parameters for
these decays are also measured for the first time. The measured angular decay
parameter for , , is found to be negative, different to the other
decay processes in this measurement. In addition, the "12\% rule" and isospin
symmetry in the and and
systems are tested.Comment: 11 pages, 7 figures. This version is consistent with paper published
in Phys.Lett. B770 (2017) 217-22
Observation of an anomalous line shape of the mass spectrum near the mass threshold in
Using events collected by the BESIII experiment
in 2012, we study the
process and observe a significant abrupt change in the slope of the
invariant mass distribution at the
proton-antiproton () mass threshold. We use two models to
characterize the line shape around
: one which explicitly incorporates the opening of a
decay threshold in the mass spectrum (Flatt\'{e} formula), and another which is
the coherent sum of two resonant amplitudes. Both fits show almost equally good
agreement with data, and suggest the existence of either a broad state around
with strong couplings to final states or a
narrow state just below the mass threshold. Although we cannot
distinguish between the fits, either one supports the existence of a
molecule-like state or bound state with greater than significance
Observation of in
Using a sample of events recorded with
the BESIII detector at the symmetric electron positron collider BEPCII, we
report the observation of the decay of the charmonium state
into a pair of mesons in the process
. The branching fraction is measured for the first
time to be , where the first uncertainty is
statistical, the second systematic and the third is from the uncertainty of
. The mass and width of the are
determined as MeV/ and
MeV.Comment: 13 pages, 6 figure
Measurement of proton electromagnetic form factors in in the energy region 2.00-3.08 GeV
The process of is studied at 22 center-of-mass
energy points () from 2.00 to 3.08 GeV, exploiting 688.5~pb of
data collected with the BESIII detector operating at the BEPCII collider. The
Born cross section~() of is
measured with the energy-scan technique and it is found to be consistent with
previously published data, but with much improved accuracy. In addition, the
electromagnetic form-factor ratio () and the value of the
effective (), electric () and magnetic () form
factors are measured by studying the helicity angle of the proton at 16
center-of-mass energy points. and are determined with
high accuracy, providing uncertainties comparable to data in the space-like
region, and is measured for the first time. We reach unprecedented
accuracy, and precision results in the time-like region provide information to
improve our understanding of the proton inner structure and to test theoretical
models which depend on non-perturbative Quantum Chromodynamics
Evidence of a resonant structure in the cross section between 4.05 and 4.60 GeV
The cross section of the process for
center-of-mass energies from 4.05 to 4.60~GeV is measured precisely using data
samples collected with the BESIII detector operating at the BEPCII storage
ring.
Two enhancements are clearly visible in the cross section around 4.23 and
4.40~GeV.
Using several models to describe the dressed cross section yields stable
parameters for the first enhancement, which has a mass of 4228.6 \pm 4.1 \pm
6.3 \un{MeV}/c^2 and a width of 77.0 \pm 6.8 \pm 6.3 \un{MeV}, where the
first uncertainties are statistical and the second ones are systematic.
Our resonant mass is consistent with previous observations of the
state and the theoretical prediction of a molecule.
This result is the first observation of associated with an
open-charm final state.
Fits with three resonance functions with additional , ,
, , or a new resonance, do not show significant
contributions from either of these resonances. The second enhancement is not
from a single known resonance. It could contain contributions from
and other resonances, and a detailed amplitude analysis is required to better
understand this enhancement
Search for the decay
We search for radiative decays into a weakly interacting neutral
particle, namely an invisible particle, using the produced through the
process in a data sample of
decays collected by the BESIII detector
at BEPCII. No significant signal is observed. Using a modified frequentist
method, upper limits on the branching fractions are set under different
assumptions of invisible particle masses up to 1.2 . The upper limit corresponding to an invisible particle with zero mass
is 7.0 at the 90\% confidence level
Observation and study of the decay
We report the observation and study of the decay
using events
collected with the BESIII detector. Its branching fraction, including all
possible intermediate states, is measured to be
. We also report evidence for a structure,
denoted as , in the mass spectrum in the GeV/
region. Using two decay modes of the meson ( and
), a simultaneous fit to the mass spectra is
performed. Assuming the quantum numbers of the to be , its
significance is found to be 4.4, with a mass and width of MeV/ and MeV, respectively, and a
product branching fraction
. Alternatively, assuming , the
significance is 3.8, with a mass and width of MeV/ and MeV, respectively, and a product
branching fraction
. The angular distribution of
is studied and the two assumptions of the
cannot be clearly distinguished due to the limited statistics. In all
measurements the first uncertainties are statistical and the second systematic.Comment: 10 pages, 6 figures and 4 table
Observation of and confirmation of its large branching fraction
The baryonic decay is observed, and the
corresponding branching fraction is measured to be
, where the first uncertainty is statistical
and second systematic. The data sample used in this analysis was collected with
the BESIII detector operating at the BEPCII double-ring collider with
a center-of-mass energy of 4.178~GeV and an integrated luminosity of
3.19~fb. The result confirms the previous measurement by the CLEO
Collaboration and is of greatly improved precision, which may deepen our
understanding of the dynamical enhancement of the W-annihilation topology in
the charmed meson decays
- …