3 research outputs found

    Arrhythmogenic Cardiomyopathy: Exercise Pitfalls, Role of Connexin-43, and Moving beyond Antiarrhythmics

    No full text
    Arrhythmogenic Cardiomyopathy (ACM), a Mendelian disorder that can affect both left and right ventricles, is most often associated with pathogenic desmosomal variants that can lead to fibrofatty replacement of the myocardium, a pathological hallmark of this disease. Current therapies are aimed to prevent the worsening of disease phenotypes and sudden cardiac death (SCD). Despite the use of implantable cardioverter defibrillators (ICDs) there is no present therapy that would mitigate the loss in electrical signal and propagation by these fibrofatty barriers. Recent studies have shown the influence of forced vs. voluntary exercise in a variety of healthy and diseased mice; more specifically, that exercised mice show increased Connexin-43 (Cx43) expression levels. Fascinatingly, increased Cx43 expression ameliorated the abnormal electrical signal conduction in the myocardium of diseased mice. These findings point to a major translational pitfall in current therapeutics for ACM patients, who are advised to completely cease exercising and already demonstrate reduced Cx43 levels at the myocyte intercalated disc. Considering cardiac dysfunction in ACM arises from the loss of cardiomyocytes and electrical signal conduction abnormalities, an increase in Cx43 expression—promoted by low to moderate intensity exercise and/or gene therapy—could very well improve cardiac function in ACM patients

    Cardiac troponin T N-domain variant destabilizes the actin interface resulting in disturbed myofilament function

    No full text
    Missense variant Ile79Asn in human cardiac troponin T (cTnT-I79N) has been associated with hypertrophic cardiomyopathy and sudden cardiac arrest in juveniles. cTnT-I79N is located in the cTnT N-terminal (TnT1) loop region and is known for its pathological and prognostic relevance. A recent structural study revealed that I79 is part of a hydrophobic interface between the TnT1 loop and actin, which stabilizes the relaxed (OFF) state of the cardiac thin filament. Given the importance of understanding the role of TnT1 loop region in Ca2+ regulation of the cardiac thin filament along with the underlying mechanisms of cTnT-I79N-linked pathogenesis, we investigated the effects of cTnT-I79N on cardiac myofilament function. Transgenic I79N (Tg-I79N) muscle bundles displayed increased myofilament Ca2+ sensitivity, smaller myofilament lattice spacing, and slower crossbridge kinetics. These findings can be attributed to destabilization of the cardiac thin filament's relaxed state resulting in an increased number of crossbridges during Ca2+ activation. Additionally, in the low Ca2+-relaxed state (pCa8), we showed that more myosin heads are in the disordered-relaxed state (DRX) that are more likely to interact with actin in cTnT-I79N muscle bundles. Dysregulation of the myosin super-relaxed state (SRX) and the SRX/DRX equilibrium in cTnT-I79N muscle bundles likely result in increased mobility of myosin heads at pCa8, enhanced actomyosin interactions as evidenced by increased active force at low Ca2+, and increased sinusoidal stiffness. These findings point to a mechanism whereby cTnT-I79N weakens the interaction of the TnT1 loop with the actin filament, which in turn destabilizes the relaxed state of the cardiac thin filament
    corecore